GNU SETL User Guide

Edition 3.5.8, for GNU SETL Version 3.5.8
Updated 10 December 2022

by dB

Table of Contents

The setl command.................................. 1
Examples. ... 1
The setl command and argumentsoovuerereeennennnnnn. 2
H1ANVOCATIONt 8
Environment variables 9
SIgNALS . .t 10
Exit status 10

The setlcpp command............................. 11
Examples. . ..o 11
The setlcpp command and arguments.c..ooevviiuee. .. 12
Environment variables......... ... i 13

The setltran command............................ 14
Examples. . ..o 14
The setltran command and arguments............................. 15

The setl command

The setl command is the primary interface to the GNU SETL system. In typical use, it
preprocesses SETL programs using setlcpp and compiles them with setltran into GNU
SETL Virtual Machine code, which it then executes.

Depending on the environment, your SETL program will be able to read from its standard
input channel (stdin), write to its standard output and error channels (stdout and stderr),
create and communicate with other processes, handle signals, receive timer events, listen on
server ports, and open and use files, network connections, and existing file descriptors.

Examples

This is the output of the command ‘setl --help”:

GNU SETL programming language processor

Usage: setl [OPTIONS] [INPUT] [ARGS]

——[nol cpp force [non]use of preprocessor
-I..., -D..., -U... passed to setlcpp; these imply --cpp
--compile, -c emit VM code on stdout, don’t run
--translated, -t input is VM code, not SETL source
-—font-hints just emit source prettyprinting hints
--keyword-case=any | upper | lower ("stropping" convention) -
control keyword recognition (default any)
--identifier-case=any|upper|lower|mixed control recognition
of user variable names (default any)
—--maxmem=N limit memory use (k, m, or g suffix OK)
--restricted, -r restrict rights, for untrusted code
--allow-open=WHAT,HOW ... restriction exemptions for open()
--allow-fd-open=FD,HOW ... exemptions for open() over fd
--allow-mkstemp=TEMPLATE ... exemptions for mkstemp() calls
--allow-filter=COMMAND ... exemptions for filter() calls
--allow-system=COMMAND ... exemptions for system() calls

--setlcpp=COMMAND specify preprocessor command
--setltran=COMMAND specify translator command

--help, -h display this help on stdout and exit
--version display version info on stdout and exit
--verbose, -v make noise on stderr

-—debug make more noise on stderr
-—abort-on-error dump core for SETL-level error

-FD input from numeric file descriptor FD

| COMMAND input from piped stdout of COMMAND
FILENAME input from file FILENAME

STRING get whole program directly from STRING

-, -- input from stdin (default)

The setl command 2

Examples:
setl mypgm.setl my args
setl ’print ("Hello, world.");’

If the Texinfo documentation is installed, "info setl" may work.
PDF and HTML docs are usually under share/doc/setl/ somewhere.

See setl.org for more documentation, source code, etc.

Please report bugs to David.Bacon@nyu.edu. Thanks for using

SETL

, the World’s Most Wonderful Programming Language!

This is the output of the command ‘setl "print(57);""

57

And of ‘setl "print(command_line);" a "b c" 57"
[a b ¢’ ’57°]

The setl command and arguments

Here is the general form of the setl command:

setl

[options] [input] [run args]

The options include:

——[nolcpp

By default, the GNU SETL Preprocessor, setlcpp, an adaptation of GNU CPP
(the GNU C Preprocessor), is applied if the input program appears to require it.
Use --cpp or —-nocpp to make an explicit choice. Options -I..., -D..., and
-U. .., which are meaningful only to the preprocessor, also imply --cpp.

The effective setting of this option in the absence of an explicit choice depends
on whether the input appears to have possible setlcpp directives. Because a
false positive is usually harmless, apart from incurring a little extra overhead for
an unnecessary setlcpp invocation, the default is ——cpp if there are any lines
whose first token is ‘#’.

There are actually some exceptions to that: a line that begins with ‘#!’ doesn’t
imply a default of --cpp, nor does a #1line directive that is in the canonical form
‘#line digits "filename"’ starting in column 1 and followed immediately by a
newline. Each space shown is a single space.) Such lines are instead transformed
directly by the setl command into ‘# digits "filename"’, just as setlcpp
would do.

Also, the presence of identifiers starting with a double underscore, such as
__VERSION __FILE or __LINE__, imply --cpp, and are transformed by
setlcpp appropriately if recognized. Note that no SETL variable identifier can
begin with an underscore, so such symbols can only be preprocessor symbols
(like those introduced via ‘#define’ or a -D... option).

- ——

The setl command 3

At this time, setl has no option for spewing just the preprocessor output,
although this can be retrieved from the %S0OURCE section of the translator output
(see ——compile) or generated directly using the setlcpp command.

To apply the preprocessor, setl calls setlcpp with options -C and -lang-setl.
The -lang-setl option is needed for correct processing of SETL string literals
and comments. The -C (capital C) option means retain comments: this is
used because there was once and may yet be again an escape convention where
pseudo-code is enclosed in ‘/* ... */’. In ~lang-setl mode, -C also happens to
cause SETL comments (not just C comments) to be retained in the preprocessor
output.

-I.

-D..

-U.. These options imply --cpp and are passed along to setlcpp in the order they
occur.
There must be no space between the -I, -D, or -U and its sub-argument: ‘-I..’is
good but ‘-I ..’ fails with a message like ‘setlcpp: Directory name missing
after -I option’.
Directories listed in the SETL_INCLUDE_PATH environment variable will be
searched after any specified via -I options when an #include directive is
encountered. There are no predefined default search directories.

—--compile

-c Runs only setltran, the GNU SETL translator (compiler). Produces (human-
readable) GNU SETL Virtual Machine code on stdout.

-—translated

-t Assumes that the input is GNU SETL Virtual Machine code, such as might
have been produced by ‘setl -c’.

--font-hints

Spews prettyprinting hints corresponding to the source input, and then exits suc-
cessfully. Implies ——nocpp, though you can put a —-cpp after the ——font-hints
option to override that and thereby get hints for the source as already prepro-
cessed.

The hints are output as 3 integers: beginning offset, ending offset, and suggested
font. There is one line of these per token of input. Comments count as whitespace.
The offsets can be thought of as referring to the cracks between the characters,
so if the first input character is a whole token by itself, its beginning and ending
offsets are 0 and 1 respectively.

If the font codes are taken to mean roman for 1, italic for 2, and bold for 3, then
predefined tokens of the SETL language will be in bold, literals in roman, and
user identifiers in italics (though user-defined operators, i.e., those introduced
by op or operator declarations, will be in bold). No font hints are given for
comments, which probably look best in roman under this presentation scheme.

The --font-hints option is passed to setltran (setltran --font-hints).

Here is a little program called texinfo.setl which produces Texinfo output
(see the GNU Texinfo manual or https://www.gnu.org/software/texinfo/).

https://www.gnu.org/software/texinfo/

The setl command 4

It maps 2 to @emph and 3 to @strong, and leaves everything else in the default
font. With its several single-letter variable names, it is perhaps not a splendid
example of lucid SETL programming, but it has a couple of tuple formers that
might amuse old fans of the World’s Most Wonderful Programming Language:

pgmfile := command_line(1l) 7 ’texinfo.setl’;

n :=## 1 "> + #pgmfile + #°"’ + 1; -- ugh

p := fileno open (’setl --font-hints ’+pgmfile, ’pipe-from’);
hints := [[i-n,j-n,k] : doing reada(p,i,j,k); while not eof];
close(p);

s := getfile pgmfile;

m := 0;

putchar (’’+/[at_sub s(m+l..i) + decorate (s(i+1l..j), k) :
[i,j,k] in hints step m := j; 1);
putchar (at_sub s(m+1..));

proc decorate (s, k); -- decorate string s using font hint k
case k
when 2 => return ’@emph{’+at_sub s+’}’;
when 3 => return ’@strong{’+at_sub s+’}’;
otherwise => return at_sub s;
end case;
end proc;

op at_sub (s);

gsub (s, ’@’, ’@Q@’); -- double any existing @ signs
gsub (s, ’{’, ’@{’); -- and take care of braces
gsub (s, ’}’, ’@}’);
return s;

end op;

Applied to itself (the default!), the above program’s output is as follows. Note
that this output looks sort of OK in HTML and in TgX-based renderings (DVI,
whence PDF and PostScript), but is virtually illegible in an info reader. This
program is of course a mere toy, however, and the gentle reader is referred to
dB’s thesis, Appendix A, for an example of what can be done with a much
fussier and more comprehensive pretty-printer:

pgmfile := command line(1) ? 'texinfo.setl’;

ni=## 1" + ffpgmfile + # + 15 —ugh

p := fileno open (’setl —font-hints +pgmfile, 'pipe-from’);

hints := [[i-n,j-n,k] : doing reada(p,i,j,k); while not eof];

close(p);

s = getfile pgmfile;

m = 0;

putchar (”+/[at_sub s(m+1..i) + decorate (s(i+1..5), k) :
[i,j,k] in hints step m := j;]);

putchar (at_sub s(m+1..));

proc decorate (s, k); — decorate string s using font hint k

case k
when 2 => return 'Qemph{’+at_sub s+’}’;
when 3 => return '@strong{’+at_sub s+'}’;

otherwise => return at_sub s;

https://cs.nyu.edu/media/publications/bacon_david.pdf

The setl command 5

end case;
end proc;

op at_sub (s);
gsub (s, '@Q’, '’@QQ’"); — double any existing @ signs
gsub (s, {’, ’@{’); — and take care of braces
gsub (s, '}, '@Q}’);
return s;
end op;

Note how this program deals with the unpleasant fact that even programs
that are not passed through setlcpp get a line of the form ‘# 1 "filename"’
prepended on their way into setltran. A slightly simpler variation on this pro-
gram is suggested in the corresponding setltran option description (setltran
--font-hints).

--keyword-case=upper | lower | any
--identifier-case=upper|lower|any|mixed

——maxmem=n

By default, the GNU SETL translator recognizes keywords and user identifiers
case-insensitively, i.e., in any lettercase. Details on this and the other possibilities
can be found with the corresponding setltran option descriptions (setltran
--keyword-case and setltran --identifier-case).

Limits the amount of memory that the GNU SETL Virtual Machine allows to
be allocated for data

The decimal number n may include a case-insensitive suffix K (1024), M (1024K),
or G (1024M).

The default is unlimited, up to what the host system will bear. This default
can be explicitly specified with ‘--maxmem=0’.

—--restricted

-r

If —-restricted (or equivalently -r) is specified, the GNU SETL Virtual
Machine disallows certain operations, such as file and socket operations, that
can pose security risks. For specifics, see Section “Restricted Mode” in the GNU

SETL Library Reference.

Restricted mode is intended to let you run untrusted client programs. For
example, you might wish to do this to let your students test and submit their
SETL programs directly on and through your Web site. Dave’s Famous Original
SETL Server accepts programs through a web form and runs them in restricted
mode.

This mode would also be suitable for a browser plugin that supports SETL
markup (SETL program text embedded in Web pages).

To allow access to specific resources even in restricted mode, use as many
--allow-... options as required.

https://setl.org/setl/setl-server.html
https://setl.org/setl/setl-server.html

The setl command 6

--allow-open=what,how ...

--allow-fd-open=fd, how ...

--allow-mkstemp=template ...

-—allow-filter=command ...

--allow-system=command ...
These options, which may be used multiple times, drill little holes in the
firewall erected by the —--restricted option, giving the SETL program access
to particular resources specified at setl invocation time.

For example, you can give your students the time of day with
‘-—allow-open=profhost:daytime,tcp-client’.

Or, if you start their programs in an environment where file descriptor 4 is
already open on some pipe, socket, or file you want them to be able to read
from, then ‘--allow-fd-open=4,r’ would do the trick.

The arg ‘--allow-mkstemp=/tmp/homework-1XXXXXX’ allows the SETL
mkstemp primitive to be called with the given template, for the safe use of
temporary scratch files in restricted mode.

Likewise, ‘--allow-filter=fmt’ lets the SETL program apply filter to the
commmand fmt, and ‘--allow-system="mail prof </tmp/summary$(uid)"’
lets the program call system with a very particular mail command.

Note that commands, filenames, and templates in --allow-. .. args will require
appropriate quoting to deal with internal spaces and other special characters
when a standard Bourne-type shell is used to invoke setl, as that latter example
illustrates.

Meaningful values of what, £d, and how are those accepted by the SETL open
primitive, except that a tuple argument to open must be represented as a pair
of strings separated by a colon in ——allow-open options. Specify integer values
as strings of decimal digits.

There should be no space around the comma that separates what or fd from
how.

Timer streams are always allowed to be opened, without the need to give an
--allow-open option for them.

The what part of an ——allow-open argument must be matched exactly in the
SETL program’s open call (or equivalent auto-open), with these exceptions: (1)
the names of signal-catching, signal-ignoring, and signal-defaulting streams need
only be equivalent according to the usual open convention; and (2) when what
is a network (host:service) spec, the matching is case-insensitive.

The case-sensitive matching for commands and filenames is the safest way to
treat an -—allow-open security exemption, even though open itself may behave
case-insensitively on some combinations of OS and filesystem.

--setlcpp=command
This specifies a preprocessor command to be used in place of the default setlcpp.
The default is that if setl appears to have been invoked using a specific
pathname (i.e., there is a directory separator character in argv[0] at the C
level), then setlcpp is sought in the same directory as setl was ostensibly found

The setl command 7

in. Otherwise, given no directory separator character, the PATH environment
variable is searched in the usual POSIX way for a directory containing an
executable setlcpp.

The command in the —--setlcpp option is in fact taken as the initial substring
of a command to be passed, unquoted, with appended args such as -D... and
-I..., quoted, to the POSIX standard (Bourne-compatible) shell. Thus PATH
is also consulted if the specified command has no directory separator character
in its first token.

--setltran=command

--help
-h

—--version

—--verbose
-V

--debug

This specifies a translator command to be used in place of the default setltran.
The default that if setl appears to have been invoked using a specific pathname
(i.e., there is a directory separator character in argv[0] at the C level), then
setltran is sought in the same directory as setl was ostensibly found in.
Otherwise, given no directory separator character, the PATH environment variable
is searched in the usual POSIX way for a directory containing an executable
setltran.

The command in the —-setltran option is in fact taken as the initial substring
of a command to be passed, unquoted, with appended args such as --verbose,
to the POSIX standard (Bourne-compatible) shell. Thus PATH is also consulted
if the specified command has no directory separator character in its first token.

Spews a command summary on stdout, and exits successfully.
Spews GNU SETL version information on stdout, and exits successfully.

Spews some garbage on stderr during execution for the amusement of nerds.

In a normal build of setl, the -—debug option does nothing at run time. But
if the preprocessor symbol DEBUG_TRACE was asserted when setl was built,
then --debug causes instruction-by-instruction tracing of GNU SETL Virtual
Machine execution, on stderr.

Regardless of DEBUG_TRACE, this option is passed to setltran (setltran
--debug).

A single hyphen is acceptable in place of the double hyphen in all the above options. Single-
letter options only take a single hyphen, however. Also, single-letter options may not be

“clustered”:

loses.

each option must be a separate argument, so ‘setl -c -v’ wins but ‘setl -cv’

Possibilities for the input argument to the setl command are tried in the following order:

-fd

| command

Program comes from the already open file descriptor £d, where fd is a decimal
integer.

Program comes from the standard input (stdin). This is the default if there are
no other input arguments to setl.

Program comes from the standard output of command.

The setl command 8

filename Program comes from the file filename.

string Program comes from the argument string itself.

#! invocation

On systems that support the convention in which any script beginning with the characters
#! (hashbang) is passed to the interpreter whose absolute pathname appears right after the
#!, the setl command may be run indirectly to create SETL scripts.

Here is an example:

#! /usr/bin/setl
print (command_name, command_line);

If that script is put in /tmp/prtcmd and made executable, and if setl (together with
setlcpp and setltran) is installed in /usr/bin, then the shell command

/tmp/prtcmd a2 ’Hetu’ ’eh you’ 57
will give the output
/tmp/prtcmd [a2 Hetu ’eh you’ ’57°]

Note that the pathname of the script is available to the program as the string command_name,
and the arguments to the script as the tuple of strings command_line.

Another possibility is to begin the shell script as follows when you don’t wish to specify an
absolute pathname for the setl command but would rather have it found in the user’s PATH,
and don’t need to pass any options to setl:

#! /usr/bin/env setl
Multi-line SETL programs can also be embedded in shell scripts. Example:

#! /bin/sh

setl -3 3<<’ !’ "g@"

print ("Command args:", command_line);

print ("Please enter a number, string, set, or tuple:");

read (v);

print ("Thank you. I now have", type v, "v =", v);

I
The above script tells setl to read source code from POSIX file descriptor 3, which is
directed to the in-line here document that ends with a bang. The single quotes around
the first bang indicate, in the bizarre and arcane language of the Bourne shell, that the
SETL program text is to be taken literally, not subjected to parameter expansion, command
substitution, or arithmetic expansion.

So, if the above script is executed or even just sourced by a Bourne-compatible shell, it will
prompt on stdout and read from stdin, just as an equivalent ‘#!’ SETL script would when
executed, or as a free-standing SETL program run by the setl command would. Using this
technique, it is easy to embed any number of SETL programs in a shell script.

Note, however, that if a program in-lined in that way has a syntax error or experiences
an execution error, the diagnostic will refer to a program named ‘-3’, and a line number
relative to where the program begins. A #line directive can be used to work around this
problem. For example, if the above script is called bach, then the line

#line 4 "bach"

The setl command 9

could be inserted as the first line of the program to ensure that diagnostics refer to bach and
the correct line number of the script. Then if the user enters an invalid input, the diagnostic
will point to line 6 of bach, the read statement.

That literal line number in the #line directive is obviously a maintenance hazard, but if you
are willing to assume a working /bin/bash, and approve of the shell making “here-document”
substitutions for sequences such as $. .. in your SETL code, then another way to embed it
in bach is:

#! /bin/bash

Lines of shell script

setl -3 3<<! args to SETL program ...
#line $((LINENO+2)) "bach"

—-— Lines of SETL program ...

I

More lines of shell script ...

Finally, a very short SETL program can be entirely contained within a command-line
argument; here is a functional equivalent to the bach scripts above:

#! /bin/sh

setl °’

#line 4 "bach"

print ("Command args:", command_line);

print ("Please enter a number, string, set, or tuple:");
read (v);

print ("Thank you. I now have", type v, "v =", v);

b ll$@||

Note that special care must be taken of apostrophes in a program embedded in this last way
(or of double quotes if those are used to enclose it), in order to keep the shell happy.

Environment variables

The environment variables to which the setl command is sensitive are as follows.

HOME This identifies the user’s home directory, if any. It gives the default for the
SETL chdir parameter.

PATH For commands launched by your SETL program, e.g., by system or filter,
or by an open on a pipe or pump stream, the PATH environment variable is
used in locating the executable. PATH is also used in searching for the setlcpp
and setltran executables when setl itself appears to have been found in a
directory listed in PATH (i.e., when there is no directory separator character in
argv[0] at the C level) and where this search is not overridden by a —-setlcpp
or ——setltran option.

SETL_LINEBUF_STDERR
By default, characters on the standard output stream (stderr) are flushed
(written out) as soon as possible; i.e., the stream is unbuffered (see Section
“Buffering” in the GNU SETL Library Reference). But if SETL_LINEBUF_STDERR
is set (to anything, even the null string), then stderr is line buffered, meaning

The setl command 10

that characters may not be written out until the next newline is written to
stderr by the SETL program.

This can be convenient when a bunch of different processes all want to issue
diagnostics to the terminal at the same time, as it greatly reduces the likelihood
that those messages will be intermingled on a character-by-character basis. In
a production-level set of related processes, of course, it is probably better to
redirect everyone’s stderr to a common server that respects newlines and can
perform additional functions such as keeping a log, presenting a highlighted
real-time display, etc.

Signals

For the signals that can be caught directly by the user’s SETL program using open on a
signal stream, see Section “Signal streams” in the GNU SETL Library Reference.

Exit status

The setl command exits with a non-zero status in the event of an error. Specifically, if
the invocation of setlcpp fails, setl returns its (error) status. Otherwise, if setltran fails,
setl returns that status. (If the failure of setlcpp or setltran is due to termination by
a signal, the status will be 128 plus the signal number, in mimicry of the standard shell
convention.) Otherwise, if setl itself encounters an unrecoverable error, it issues a diagnostic
and returns 1. But if a stop statement is executed, setl exits with the status given by the
stop argument. That status defaults to 0, just as when the program flows through its last
statement.

Note that although stop accepts any integer small enough to fit into a C int, it is returned
modulo 256 to the invoker of the setl command.

If you want your program’s exit status to be that of the last subcommand it waited for,
and mimic the shell in the case of abnormal termination by signal, you could use this little
horror:

stop if status >= O then status else 128 + abs status end;

Otherwise, if you only care that your exit status be zero or nonzero according as the last
subcommand succeeded or failed, or you know that the last subcommand was actually
being managed by an enclosing shell (the usual case, unless you begin the subcommand
with the word exec), or even if you just don’t mind having the exit values associated with
signal-triggered terminations a little weirdly mapped (the other exit codes will come through
fine), you can generally get away with the much simpler

stop status;

11

The setlcpp command

The setlcpp command is a modification of cpp, the GNU C PreProcessor. The main
extension to GNU CPP is the provision of a ~lang-setl option, which should normally be
used when setlcpp is applied to SETL programs.

In the GNU SETL system, setlcpp is usually run automatically by the setl command and
seldom directly from the interactive command line.

Examples

This is the output of the command ‘setlcpp —--help”:

GNU SETL programming language preprocessor

Usage: setlcpp [OPTIONS] [INPUT [OUTPUT]]

--help, -h display this help on stdout and exit
--version display version info on stdout and exit
-lang-setl SETL lexical environment; implies -$
CPP-0OPTION GNU CPP option
If INPUT is "-" or is not specified, standard input is used.
Otherwise, INPUT must name a readable file. Similarly, OUTPUT
must name a writable file, or be "-" for the default stdout.

The "SETL_INCLUDE_PATH" environment variable, if -lang-setl is
specified, extends the list of directories given by -I options.
Directory names must be separated by a ":" character.

Other environment variables are as for GNU CPP version 2.7.2.1.
Note also the --[nolcpp option of the "setl" command.

If the Texinfo documentation is installed, "info setlcpp" may work.
PDF and HTML docs are usually under share/doc/setl/ somewhere.

See setl.org for more documentation, source code, etc.

Please report bugs to David.Bacon@nyu.edu.

Now suppose the file main.setl contains

-- This is a comment at the top of main.setl.
-- Let’s now incorporate inc.setl:

#include "inc.setl"

print (corpor, version);

and the file inc.setl contains

The setlcpp command 12

$ For nostalgic reasons, this is also a comment.

#define corpor "SETL, Inc."

const version = __VERSION__;

$ Here ends the included file.
Then the output of ‘setlcpp -C -lang-setl main.setl’ (which is how setl invokes
setlcpp) is

1 "main.setl"

-- This is a comment at the top of main.setl.

-- Let’s now incorporate inc.setl:

1 "inc.setl" 1

$ For nostalgic reasons, this is also a comment.

const version = "2.7.2.1";
$ Here ends the included file.
3 "main.setl" 2

print ("SETL, Inc.", version);

Note that a SETL const declaration may often serve as well as or better than a prepro-
cessor #define. A preprocessor symbol, however, can be particularly useful for governing
conditional source code inclusion via #if or #ifdef. Macros that take arguments have their
uses too, though the user should always be aware of the literal expansion of arguments so as
to be on guard against side-effects that result from multiple evaluations of an expression.

The setlcpp command and arguments

Here is the general form of the setlcpp command:
setlcpp [options] [input [output]]

The options include:

--help
-h Spews a command summary on stdout, and exits successfully.
--version
Spews setlcpp version information on stdout, and exits successfully.
-lang-setl
Assumes that the input is a SETL program, so that its lexical peculiarities can
be accommodated. Otherwise, -lang-c, which was once a standard cpp option,
will be assumed.
The -lang-setl option also makes setlcpp recognize the SETL_INCLUDE_PATH
environment variable.
cpp-option

Any other argument beginning with a hyphen (‘-’) is interpreted as if by the
GNU C Preprocessor (cpp), except that there are no predefined default include
directories such as /usr/include.

As of this writing, setlcpp is based on the version of cpp corresponding to
GCC 2.7.2.1. That original is bundled with the GNU SETL source distribution,

The setlcpp command 13

including its Texinfo (cpp.texi and cpp.info*) documentation. For most
purposes, however, you may find that the command ‘info cpp’ on your system
or the on-line GNU CPP manual at http://gcc.gnu.org/onlinedocs/ gives
adequate if somewhat anachronistic information. Otherwise, to get the version-
specific truth, unpack cpp-2.7.2.1.tgz and in the resulting subdirectory do
this:

info -f ./cpp.info

If input is a hyphen (=) or is not specified, setlcpp reads from standard input (stdin).

The output argument, which can only be present if input is present, must name a writable
file or be a hyphen representing standard output (stdout), the default.

Note that setlcpp is case-sensitive despite any --keyword-case or —--identifier-case
options that might have been passed to a parent setl command.

Like cpp, the setlcpp command returns 0 to the operating system on success, non-zero on
failure.

Environment variables

SETL_INCLUDE_PATH
If the setlcpp -lang-setl option was given, then SETL_INCLUDE_PATH ex-
tends the list of directories named in -I options, much as C_INCLUDE_PATH
does in the -lang-c case. The standard cpp option -nostdinc will cause
SETL_INCLUDE_PATH to be ignored, however.

For details on other environment variables, see the references cited under [cpp-option],
page 12.

http://gcc.gnu.org/onlinedocs/

14

The setltran command

The setltran command takes SETL programs and compiles them into a simple assembly-like
language that the setl command can interpret as GNU SETL Virtual Machine code.

In the GNU SETL system, setltran is usually run automatically by the setl command
and seldom directly.

Examples

This is the output of the command ‘setltran --help’:

GNU SETL programming language translator (compiler)

Usage: setltran [OPTIONS] [FILENAME | - | STRING]
-—help, -h display this help on stdout and exit
--version display version info on stdout and exit
-—font-hints emit source prettyprinting hints, period
--verbose, -v otiose sucrose on stderr
--debug trace parsing, etc. on stderr

--keyword-case=any|upper|lower ("stropping" convention) -
control SETL keyword recognition (default any)

--identifier-case=any|upper|lower|mixed control recognition
of user variable names (default any)

The setltran command reads from standard input by default or if "-"
is specified. Otherwise, if FILENAME names a readable file, it reads
from there. Failing that, it reads directly from STRING.

When the translator is invoked by a command like "setl -c ...", the
preprocessor (setlcpp) is applied first if necessary.

If the Texinfo documentation is installed, "info setltran" may work.
PDF and HTML docs are usually under share/doc/setl/ somewhere.

See setl.org for more documentation, source code, etc.

Please report bugs to David.Bacon@nyu.edu.

This is the output (on stdout) of the command ‘setltran "print(57);"’, with tab stops
every 8 columns (tabs separate opcodes and operands):

This is code for the GNU SETL Virtual Machine.
%SOURCE
print (57);
1 print(57);
%CODE

The setltran command 15

print (57);
0 mainproc U__MAIN
0 call U__unnamed_SETL_program >-
0 copy <I_0 >STATUS
0 stop <STATUS
0 end U__MAIN
0 proc U__unnamed_SETL_program >RET
6 scall S_PRINT <I_b7 >-
6 copy <I_0 >STATUS
6 stop <STATUS
6 end U__unnamed_SETL_program
#EXECUTE

For more information on GNU SETL Virtual Machine code, see the GNU SETL Implemen-
tation Notes [stub].

The setltran command and arguments

Here is the general form of the setltran command:
setltran [options] [input]

The options include:

—--help

-h Spews a command summary on stdout, and exits successfully.

--version
Spews setltran version information on stdout, and exits successfully.

--font-hints
Spews prettyprinting hints corresponding to the source input.
It is left as an exercise to the reader to simplify the texinfo.setl program in the
description of the setl command’s corresponding option (setl --font-hints).
Hint: by invoking setltran as the subprocess instead of setl, you can eliminate
the offset variable, n. For extra credit, state why.

--verbose

-V On stderr, reports each of the major phases of processing, such as lexical analysis,

parsing, semantic analysis, etc.

--debug On stderr, traces the gory details of shift-reduce parsing and dumps some tables.
The author really prefers recursive descent parsers; setltran is an aberration.

This option also causes files parse.tree and flattened.tree to be created in
the current working directory.

--keyword-case=upper | lower | any

--identifier-case=upper|lower|any|mixed
By default, setltran recognizes keywords and user-introduced identifiers case-
insensitively, i.e., in any lettercase.

However, it can be useful to restrict the recognition for stylistic or maintenance
reasons.

The setltran command 16

For example, since new keywords sometimes enter the language, and “cus-
tomized” implementations can add many more, one might adopt a convention of
--keyword-case=upper to ensure that only uppercase identifiers are recognized
as keywords, no matter what new keywords might later be introduced.

That happens to correspond to the ancient and venerable Algol 68 upper
stropping convention. Point stropping, incidentally, was quite dreadful: keywords
had to be denoted by leading dots. Fortunately for Algol 68 programmers, there
was also res (standing for reserved word) stropping, which imposed no restriction
on the lettercase of keywords. That corresponds to the GNU SETL default.

A combination of ~——~keyword-case=1lower and ——identifier-case=mixed gives
a case-sensitive convention resembling that of C/C++ and Java.

The setl command passes these lettercase options through to setltran.
The setltran command takes up to one input argument in addition to any options specified.

It must be the name of a readable file, or a single hyphen (=) meaning standard input (the
default), or a string containing an entire SETL program.

Finally, setltran exits with a code of 0 on success, or a higher number on failure.

Index

#

#! invocation ...l 8
#define 3
#if, #ifdef, #ifndef Ll 2
#includeo i 3
#line directivel 2,8
#undef 3
- (read from stdin) oLl 7, 16
- (stdin or stdout, setlepp)..........c.couon.... 13
-—allow-...optionS.......... ...ttt ... 6
—-compile optionl 3
—=cppoption....... ... i i 2
--debug option............ ... ool 7,15
--font-hints option........................ 3,15
—~helpoption 7,12, 15
--identifier-case option.................. 5, 15
—--keyword-case option...................... 5, 15
—-maxmem option 5
==n0CPp OPtION 2
--restrictedoption............... L. 5
—=setlcpp option.............. ... 6
—-setltranoption.................. ...l 7
--translated option.................. 3
--verbose option............................ 7,15
--version option........................ 7,12, 15
—COPHION .o 3
“Doption ... 3
“hoption......oooii 7,12, 15
“Toption.....ooooiiiii 3, 13
-lang-setl option......................... 12,13
-nostdinc option........... oLl 13
ST OPHION .« v 5
—tOoption ... 3
SUOption . v 3
—voption.......... 7,15

/

/bin/bash 9
/bin/sh ... 8

A

Algol 68 .. 15
any case option ...l 15

17

C

C_INCLUDE_PATHt 13
case, keyword and identifier.................... 15
client programs, access to resources.............. 6
client programs, untrusted, restricted mode. 5
command, reading program from output of 7
command-line argument, reading

program from.......... oL 8
command_name, command_line.................... 8
compile-only modeol 3
compiler....... ... 3, 14
cpp (GNU C Preprocessor)...........c..co.ouen.. 12

E

environment variables, setl command........... 9
environment variables, setlcpp command...... 13
examples, setl... ... 1
examples, Set1Cppooviiiiiiiii 11
examples, setltran............................ 14
executables, search path for..................... 9
exit status, setl command..................... 10
exit status, setlcpp command 13
exit status, setltran command 16

F

file descriptor, reading program from............ 7
file, reading program from....................... 8
filter, selectively allowing 6
font hints 3, 15

G

GNU C Preprocessor (Cpp)..«.«.cveveeeuenen.. 12

H

hashbang (#!)........... o i i 8
help, setl ..o 7
help, setlcepp...cvvveiiiii i 12
help, setltran...........c.ooiiiiiiiiiiii s, 15
hints, font 3
HOME environment variable....................... 9

I

identifier case, recognizing...................... 15

K

keyword case, recognizing 15

Index

L

lettercase.ooueeiiiii i 5, 15
limit, memory........o i 5
lower case Optioncounnnn. 15

TACTO .« vttt ettt e e e et e e e e e 2
memory limit...... 5
mixed case option.............................. 15
mkstemp, selectively allowing 6

(@)

open, selectively allowing........................ 6

P

PATH environment variable....................... 9
PIEPTOCESSOT . . o vt ettt et eee et eee e e 2,11
preprocessor command 6
prettyprinting hints 3, 15

R

reading program from command output 7
reading program from command-line argument .. 8
reading program from file 8
reading program from file descriptor............. 7
reading program from stdin 7
reading program from string..................... 8
recognizing keywords, identifiers................ 15
restricted modeo i 5

run-only mode ... i i 3

18
S
search path for executables...................... 9
security, allowing selective access to resources.... 6
security, restricted model 5
SETL script .. .vvoe e 8
SETL virtual machine........................ 5,7
SETL virtual machine code............ 1, 3,14, 15
SETL_INCLUDE_PATH ciiiiint. 3, 13
SETL_LINEBUF_STDERR environment variable 9
shell script, embedding SETL programs in....... 8
signals, setl command......................... 10
stdin, reading program from..................... 7
string, reading program from.................... 8
stropping convention..................... ... 15
system, selectively allowing 6
T
Texinfo. ... 3,12
translator 3, 14
translator command............. ... il 7

U

untrusted client programs, access to resources ... 6
untrusted client programs, restricted mode 5
upper case option...............l 15

vV

verbose mode. ...l 7, 15
version, setl.t 7
VErsion, SEtLCPP « v v vvvvvi e 12
version, setltran.................ooiiiiin.... 15

	The setl command
	Examples
	The setl command and arguments
	#! invocation
	Environment variables
	Signals
	Exit status

	The setlcpp command
	Examples
	The setlcpp command and arguments
	Environment variables

	The setltran command
	Examples
	The setltran command and arguments

	Index

