
GNU SETL Library Reference
Edition 3.5.8, for GNU SETL Version 3.5.8

Updated 10 December 2022

by dB

i

Table of Contents

About this Library Reference . 1

The Library . 2
sharp (#) - size of set; length of string or tuple . 2
star (*) - multiplication; set intersection; string or tuple replication . . 3
power (**) - exponentiation . 3
plus (+) - addition; set union; concatenation . 4
minus (-) - negation or subtraction; set difference 5
slash (/) - division . 5
equalities (=, /=) - equal, not equal . 6
comparatives (<, >, <=, >=) - order-based comparisons 6
query (?) - short-circuiting om test . 6
abs - absolute value; integer value of character; Euclidean norm 7
accept - accept connection on server socket . 7
acos - arc cosine . 7
and - logical conjunction . 8
any - extract leading character using character set 8
arb - arbitrary element of set . 8
asin - arc sine . 9
atan - arc tangent . 9
atan2 - arc tangent of quotient . 9
bit_and, bit_not, bit_or, bit_xor - bitwise logical ops 9
break - extract leading substring using character set 9
call - indirect call . 10
callout - call C function . 10
ceil - ceiling (least integer upper bound) . 10
char - character encoding of small integer . 10
chdir - change directory . 11
clear_error - clear system error indicator . 11
clock - elapsed time in milliseconds . 11
close - close stream . 11
close_await, close_autoreap, close_zombie -
constants for use with close . 13

command_line - command-line arguments . 13
command_name - command name . 13
cos - cosine . 13
cosh - hyperbolic cosine . 13
date - date and time of day . 13
denotype - type of denotation in string . 14
div - integer division . 14
domain - domain of map . 14
dup, dup2 - duplicate a file descriptor . 14
eof - end-of-file indicators . 15

ii

even - test for integer divisible by 2 . 15
exec - execute another program in place of current one 16
exp - natural exponential (e raised to a power) . 16
false - predefined boolean value . 17
fdate - format date and time . 17
fexists - test for existence of file . 17
filename - name of stream . 17
fileno - file descriptor of stream . 18
filepos - current file position or #bytes transferred 18
filter - filter string through external command 19
fix - truncate real number to integer . 19
fixed - format number with optional decimal point 19
float - convert number to real . 20
floating - format number in scientific notation 20
floor - floor (greatest integer lower bound) . 21
flush - flush output buffer . 21
fork - fork into parent and child process . 21
from - take arbitrary element from set . 22
fromb - take from beginning of string or tuple . 22
frome - take from end of string or tuple . 22
fsize - size of file in bytes . 22
ftrunc - set size of file in bytes . 23
get - read lines from stdin . 23
geta - read lines from stream . 23
getb - read values from stream . 23
getc - read character from stream . 24
getchar - read character from stdin . 24
getegid - get effective group ID . 24
getenv - get value of environment variable . 25
geteuid - get effective user ID . 25
getfile - read stream up to the end . 25
getgid - get real group ID . 26
getline - read line from stream . 26
getn - read fixed number of characters from stream 26
getpgrp - get process group ID . 27
getpid - get process ID . 27
getppid - get parent process ID . 27
gets - direct-access read . 27
getsid - get session ID . 27
getuid - get real user ID . 28
getwd - current working directory . 28
glob - pathname wildcard expansion . 28
gmark - find all occurrences of pattern in string . 28
gsub - replace patterns in string . 28
hex - convert string to hexadecimal . 29
hostaddr - current host address . 29
hostname - current host name . 29

iii

ichar - integer code for character . 29
impl - implication . 30
in - membership test; iterator form . 30
incs - subset test . 31
intslash - integer quotient type switch . 31
ip_addresses - internet host addresses . 31
ip_names - internet host names . 31
is_type - type testers . 32
is_open - test for being a stream . 32
join - concatenate tuple of strings, with delimiter 33
kill - send signal to process . 33
last_error - last error message from system function 33
len - extract leading substring by length . 34
less - set less given element . 34
lessf - map less given domain element . 34
lexists - test for existence of file or symlink . 34
link - create hard link . 34
log - natural logarithm . 35
lpad - pad string on left with blanks . 35
magic - regular expression recognition switch . 35
mark - find first occurrence of pattern in string . 35
match - extract leading substring by exact match 36
max - maximum . 36
min - minimum . 37
mkstemp - create and open temporary file . 37
mod - integer modulus; symmetric set difference . 37
nargs - number of arguments given by caller . 38
newat - create new atom . 38
no_error - non-error message . 38
not - logical negation . 38
notany - extract leading character using character set 38
notin - membership test . 39
npow - all subsets of a given size . 39
nprint - print to stdout with no trailing newline 39
nprinta - print to stream with no trailing newline 39
odd - test for integer not divisible by 2 . 39
om - the undefined value . 40
open - open a stream . 40

Arguments to open . 40
TCP and UDP sockets . 42
Unix-domain sockets . 43
Connected subprocesses . 44
Signal streams . 44
Timer streams . 46
Predefined streams . 46
Automatic opening (and closing) of streams . 47
Buffering . 47

iv

Alternative how arguments to open . 49
or - logical disjunction . 51
peekc - peek at next character in stream . 51
peekchar - peek at next character in stdin . 52
peer_address - peer host address . 52
peer_name - peer host name . 52
peer_port - peer port number . 52
peer_sockaddr - peer address and port number 52
pexists - test for existence of processes . 53
pid - process ID of connected child . 53
pipe - create primitive pipe . 53
pipe_from_child - pipe from child process . 53
pipe_to_child - pipe to child process . 54
port - Internet port number . 54
pow - power set . 54
pretty - printable ASCII rendering of string . 54
print - print to stdout . 54
printa - print to stream . 55
pump - bidirectional stream to child process . 55
put - write lines to stdout . 55
puta - write lines to stream . 55
putb - write values to stream . 56
putc - write characters to stream . 56
putchar - write characters to stdout . 56
putfile - write characters to stream . 56
putline - write lines to stream . 57
puts - direct-access write . 57
random - pseudo-random numbers and selections 57
range - range of map . 58
rany - extract trailing character using character set 58
rbreak - extract trailing substring using character set 58
rlen - extract trailing substring by length . 59
rmatch - extract trailing substring by exact match 59
rnotany - extract trailing character using character set 59
rspan - extract trailing substring using character set 59
read - read values from one or more lines of stdin 59
reada - read values from one or more lines of stream 59
readlink - symbolic link referent . 60
reads - read values from a string . 60
recv - receive datagram on UDP client socket . 60
recvfrom - receive datagram on server socket . 61
recv_fd - receive file descriptor . 61
rem - integer remainder . 62
rename - rename file . 62
reverse - reverse string . 62
rewind - rewind direct-access stream . 62
round - round to nearest integer . 62

v

routine - create procedure reference . 63
rpad - pad string on right with blanks . 63
seek - reposition direct-access stream . 63
seek_set, seek_cur, seek_end - constants for use with seek 64
select - wait for event or timeout . 64
send - send datagram on client socket . 66
sendto - send datagram on server socket . 66
send_fd - send file descriptor . 66
setctty - acquire controlling terminal . 67
setegid - set effective group ID . 67
setenv - set environment variable . 68
seteuid - set effective user ID . 68
setgid - set group ID . 68
setpgid - set process group ID . 68
setrandom - set random seed . 69
setsid - create new session . 69
setuid - set user ID . 69
set_intslash - muck with integer division semantics 70
set_magic - regular expression recognition . 70
shutdown - disable I/O in one or both directions 70
shut_rd, shut_wr, shut_rdwr - constants for use with shutdown . . . 70
sign - sign . 70
sin - sine . 71
sinh - hyperbolic sine . 71
sockaddr - Internet address and port number . 71
socketpair - create bidirectional local channel . 71
span - extract leading substring using character set 72
split - split string into tuple . 72
sqrt - square root . 72
status - child process status . 72
stdin, stdout, stderr - predefined streams . 73
str - string representation of value . 73
strad - radix-prefixed string representation of integer 73
sub - replace pattern in string . 74
subset - subset test . 74
symlink - create symbolic link . 75
system - run command in subshell . 75
sys_read - low-level read . 75
sys_write - low-level write . 76
tan - trigonometric tangent . 76
tanh - hyperbolic tangent . 76
tcgetpgrp - get foreground process group ID . 76
tcsetpgrp - put process group into foreground . 76
tie - auto-flush stream upon input from other stream 77
time - elapsed CPU time in milliseconds . 77
to_lower - convert string to lowercase . 77
to_upper - convert string to uppercase . 77

vi

tod - calendar time in milliseconds . 78
true - predefined boolean value . 78
tty_pump - master end of child stream over pseudo-terminal 78
type - type of SETL value . 78
umask - set file mode creation mask . 78
ungetc - push characters back into stream . 79
ungetchar - push characters back into stdin . 79
unhex - convert from hexadecimal . 79
unlink - destroy file reference . 79
unpretty - convert string from pretty form . 79
unsetctty - relinquish controlling terminal . 80
unsetenv - remove environment variable definition 80
unstr - read value from string . 81
untie - dissolve stream association made by tie 81
val - read number from string . 81
wait - wait for any child process status change . 81
waitpid - wait for child process status change . 82
whole - format integer . 82
with - set plus one element . 83
write - write values to stdout . 83
writea - write values to stream . 83

Operator Precedence . 84

Restricted Mode . 85

Concept Index . 87

1

About this Library Reference

This document is about the library of functions, operators, etc. (collectively the intrinsics)
built into SETL. As part of the GNU SETL documentation, it also makes occasional
reference to that implementation of SETL.

For the primary document in the present set, see the GNU SETL Om.

2

The Library

SETL has no pointers, and is therefore governed by value semantics, even for arbitrarily
nested sets and tuples. Call arguments are passed by value, result, or value-result assignment,
according as the formal parameter is rd (the default), wr, or rw.

SETL has no system of datatype declarations currently, but the function and operator
signatures are shown here as if it were possible to declare the types of their formal parameters
and return values. Where an argument can be of any type, the keyword var is used.

Those signatures also employ fake typenames for some common cases: stream means an
integer or string or 2-tuple that refers to an I/O stream; pattern means a string

or 2-tuple used as a pattern argument to a string matching function such as mark; and
proc_name and proc_ref are respectively the fake typenames for what routine expects
and returns.

A further liberty is taken in cases where the return type depends upon the values of the
arguments and not just upon their types. For example, the type of the value returned by
val depends upon what is in the input string, and this is reflected in a pair of signatures for
val, one returning integer and the other returning real. Similarly, exponentiation (**)
on integer arguments returns a real when the second argument is negative, but otherwise
an integer, and again this is reflected in a pair of signatures. In cases where a wider range
of return types is possible, the designation var is used. This applies to the query operator
(?), arb, call, random, and unstr.

Finally, when the form of a set or tuple is restricted, it is often depicted that way. For
example, an ordered pair of integers may be shown as [integer, integer], and a set of 0
or more strings as {string, ...}.

If no return type is shown for a given intrinsic, it may be assumed to return om if it returns
at all. Also, om may be a possible return value even though the only types shown are other
than om. Such cases are identified in the accompanying descriptions.

Where error cases are described with no specific response such as setting last_error, but
rather with vague and sinister language like “erroneous” or “It is an error . . . ”, the most
portable assumption to make is that unspecified disasters may follow. Nevertheless, a
“checkout” SETL implementation such as GNU SETL will catch many of the easy cases such
as nonsensical or out-of-bounds arguments passed to an intrinsic, and bring the program
down with a diagnostic for them.

The finer details of many intrinsics are governed by the semantics of POSIX functions.
The general intention in this spec is that support for IEEE Std 1003.1-2001 or any newer
POSIX standard should suffice. See for example The Open Group Base Specifications Issue
7 (2018 edition) - IEEE Std 1003.1-2017 (Revision of IEEE Std 1003.1-2008) (http://www.
opengroup.org/onlinepubs/9699919799/). Linux and virtually all variants of Unix satisfy
the system needs of the SETL library, as does Cygwin (mostly).

sharp (#) - size of set; length of string or tuple

op # (set) : integer

op # (string) : integer

op # (tuple) : integer

http://www.opengroup.org/onlinepubs/9699919799/
http://www.opengroup.org/onlinepubs/9699919799/
http://www.opengroup.org/onlinepubs/9699919799/

The Library 3

The size (cardinality) of a set is the number of elements. The length of a tuple is the index
of its last non-om element.

star (*) - multiplication; set intersection; string or tuple
replication

op * (integer, integer) : integer

op * (real, real) : real

op * (real, integer) : real

op * (integer, real) : real

op * (set, set) : set

op * (string, integer) : string

op * (integer, string) : string

op * (tuple, integer) : tuple

op * (integer, tuple) : tuple

When one operand is real and the other integer, the integer value is converted as if by
float before the numbers are multiplied.

In a bounded floating-point implementation such as 64-bit IEEE 754, multiplication can
overflow to a floating-point infinity, or underflow to a subnormal number or a zero. Multiply-
ing an infinity by 0 can produce a NaN (Not a Number). Multiplying a NaN by anything
gives another NaN.

For a pair of set operands, this operator gives the set intersection, i.e., for sets a and b,
a*b = {x in a | x in b}. (The first in iterates over a, the vertical bar means such that,
and the second in tests for membership in b.)

For the cases involving a string or tuple, the result is the concatenation of however many
copies of that string or tuple are indicated by the integer operand.

power (**) - exponentiation

op ** (integer, integer) : integer

op ** (integer, integer) : real

op ** (real, real) : real

op ** (real, integer) : real

op ** (integer, real) : real

The first operand is the base, and the second is the power to raise it to.

When both operands are of type integer, the return type is integer unless the power is
negative, in which case the operands are first converted as if by float, as is the integer

operand in the mixed cases.

When the power is 0, the result is 1 regardless of the base, in the type appropriate for the
operands.

In a bounded floating-point implementation such as 64-bit IEEE 754, this operator works
like POSIX pow() for all cases that return a real.

It is right-associative, which is an incompatible change from CIMS SETL but agrees with
SETL2 and with the Fortran operator it resembles. It has higher precedence than all other
binary operators, just below all non-predicate unary operators. See [Operator Precedence],
page 84.

The Library 4

plus (+) - addition; set union; concatenation

op + (integer) : integer

op + (real) : real

op + (integer, integer) : integer

op + (real, real) : real

op + (real, integer) : real

op + (integer, real) : real

op + (set, set) : set

op + (string, string) : string

op + (tuple, tuple) : tuple

op + (string, var) : string

op + (var, string) : string

The unary forms simply check that the operand is a number and return that number.

When one operand is real and the other integer, the integer value is converted as if by
float before the numbers are added.

In a bounded floating-point implementation such as 64-bit IEEE 754, addition can overflow
to a floating-point infinity, or underflow to a subnormal number. Addition of opposite
infinities can produce a NaN (Not a Number). Adding a NaN to anything gives another
NaN.

For a pair of set operands, this operator gives the set union, i.e., all elements from both
sets. See also with.

The cases in which just one operand is a string are treated as if str is first applied to the
non-string operand (shown here as var), for string concatenation.

The assigning +:= operator, when its left-hand operand is initially om, substitutes the additive
identity (if any) of the type of its right-hand operand. So for example

sum +:= num

does not require sum to be pre-initialized before num is added to it. Here are the additive
identities:

integer 0
real 0.0
string the empty string, ""
set the empty set, {}
tuple the empty tuple, []

It is an error for the left-hand side of +:= to be om if the type of the right-hand side has no
additive identity.

Note that when x is om,

x +:= "some string"

is slightly different from

x := x + "some string"

as the latter is then equivalent to

x := str om + "some string"

or in other words

x := "*some string"

The Library 5

Also,

n +:= 1

gives n the value 1 if it is initially om, but

n := n + 1

is an error (trying to add om and a number).

Similarly, trying to accumulate a set or tuple into an uninitialized variable using plain +

rather than the assigning form +:= is an error.

minus (-) - negation or subtraction; set difference

op - (integer) : integer

op - (real) : real

op - (integer, integer) : integer

op - (real, real) : real

op - (real, integer) : real

op - (integer, real) : real

op - (set, set) : set

When one operand is real and the other integer, the integer value is converted as if by
float before the numbers are subtracted.

In a bounded floating-point implementation such as 64-bit IEEE 754, subtraction can
overflow to a floating-point infinity, or underflow to a subnormal number. Subtraction of
equal infinities can produce a NaN (Not a Number), and a NaN operand gives a NaN result.

For a pair of set operands, this operator gives the set difference, i.e., for sets a and b,
a - b = {x in a | x notin b}.

See also less, and the symmetric set difference operator mod.

slash (/) - division

op / (integer, integer) : real -- when intslash is false

op / (integer, integer) : integer -- when intslash is true

op / (real, real) : real

op / (real, integer) : real

op / (integer, real) : real

By default, all integer operands are converted as if by float, and the result is real. You
would normally use div to get integer quotients.

But you can force this slash operator to work like div for the integer / integer case by
setting intslash := true, or equivalently by calling set_intslash (true). This makes the
slash operator mimic SETL2, which entails some peril. Consider a program that reads pairs
of numbers and computes their quotients. Unless it takes care to ensure that at least one
operand is real, say by applying float, such a program will sometimes truncate quotients
and sometimes not, depending on which input numbers happen to have decimal points (or
exponents) in them.

Division of reals, if the floating-point implementation is 64-bit IEEE 754, can produce an
infinity by means of overflow or a divisor of 0, or can underflow to a subnormal number or a
zero. Division of infinities gives a NaN (Not a Number), and a NaN operand gives a NaN
result.

The Library 6

equalities (=, /=) - equal, not equal

op = (var, var) : boolean

op /= (var, var) : boolean

In most cases, two values of different types are considered unequal. But in the special case
where an integer and real are numerically equal, they are considered equal despite their
differing types.

A floating-point NaN (Not a Number) never equals anything, not even another bit-identical
NaN.

comparatives (<, >, <=, >=) - order-based comparisons

op < (integer, integer) : boolean

op < (real, real) : boolean

op < (real, integer) : boolean

op < (integer, real) : boolean

op < (string, string) : boolean

op < (tuple, tuple) : boolean

op > (integer, integer) : boolean

op > (real, real) : boolean

op > (real, integer) : boolean

op > (integer, real) : boolean

op > (string, string) : boolean

op > (tuple, tuple) : boolean

op <= (integer, integer) : boolean

op <= (real, real) : boolean

op <= (real, integer) : boolean

op <= (integer, real) : boolean

op <= (string, string) : boolean

op <= (tuple, tuple) : boolean

op >= (integer, integer) : boolean

op >= (real, real) : boolean

op >= (real, integer) : boolean

op >= (integer, real) : boolean

op >= (string, string) : boolean

op >= (tuple, tuple) : boolean

Strings are compared character by character, as if using the codes arising from ichar. Tuple
comparisons are recursive. If one string or tuple is a prefix of the other, the shorter one is
considered smaller.

Where one operand is integer and the other is real, the integer is converted as if by
float before comparison.

Comparison of a floating-point NaN (Not a Number) with anything yields false.

See also max and min.

query (?) - short-circuiting om test

op ? (var, var) : var

The Library 7

The expression

x ? y

is equivalent to the expression

if (temp := x) /= om then temp else y end

(or simply

if x /= om then x else y end

if x has no side-effects).

Thus the query operator is short-circuited like and and or.

abs - absolute value; integer value of character; Euclidean
norm

op abs (integer) : integer

op abs (real) : real

op abs (string) : integer

op abs (tuple) : real

For a number, abs returns the magnitude.

For a string, abs is equivalent to ichar.

For a tuple t of numbers,

abs t = sqrt (0 +/ [x**2 : x in t])

Thus for a complex number represented by [x, y], its magnitude is abs [x, y]. Its phase
is y atan2 x.

accept - accept connection on server socket

proc accept (stream) : integer

The argument must be a TCP or Unix-domain server socket opened by open, or denote a
host and TCP port to auto-open in "tcp-server" mode (see [Automatic opening], page 47).

The accept function waits for a client to connect, and then returns a new stream (over a
new socket fd) for that peer connection.

The select function can be used on a server socket to test whether an accept would block
on it.

It is possible for accept to fail due to conditions arising between the time of a successful
select and the issuing of the accept call. In this case accept sets last_error and returns
om.

See also peer_address, peer_name, peer_port, peer_sockaddr, sockaddr, and the
"unix-server" mode of open.

acos - arc cosine

op acos (real) : real

op acos (integer) : real

The operand must be in the range -1 to +1, and the result is in radians. See also cos.

The Library 8

and - logical conjunction

op and (boolean, boolean) : boolean

The expression

x and y

is equivalent to the expression

if x then y else false end

which is to say that the and operator is short-circuited: it only evaluates y if x is true. This
makes it suitable for use as a guard against erroneous evaluations such as subscripting a
tuple with a nonpositive integer. For example,

if i > 0 then

if t(i) = "/" then

...

end if;

end if;

can be replaced by

if i > 0 and t(i) = "/" then

...

end if;

See also or and the query operator (?), which are likewise short-circuited, and the bitwise
operators such as bit_and, which aren’t.

The and operator has a rather low precedence, above or but below not.

any - extract leading character using character set

proc any (rw string s, string p) : string

If the first character of s appears anywhere in p (treating p as a set of characters), that first
character is removed from s and returned. Otherwise, nothing happens to s, and the empty
string ("") is returned.

See also the other SNOBOL-inspired intrinsics, namely break, len, match, notany, span,
rany, rbreak, rlen, rmatch, rnotany, and rspan. The inspiration is pretty much confined
to the reuse of these names, as they are rather clumsy in their present form. But SETL
currently has neither the syntactic nor semantic support for SNOBOL-like chained pattern
matching with backtracking and easy extraction of intermediate substrings and positions
into variables.

arb - arbitrary element of set

op arb (set) : var

An arbitrary (not random, but dealer’s choice) element of the set is returned. If the set is
empty, om is returned.

See also from and random.

The Library 9

asin - arc sine

op asin (real) : real

op asin (integer) : real

The operand must be in the range -1 to +1, and the result is in radians. See also sin.

atan - arc tangent

op atan (real) : real

op atan (integer) : real

The result is in radians. See also atan2 and tan.

atan2 - arc tangent of quotient

op atan2 (real, real) : real

op atan2 (real, integer) : real

op atan2 (integer, real) : real

op atan2 (integer, integer) : real

For non-zero x, the expression

y atan2 x

is similar to the expression

atan (y/x)

but when x is 0, only the atan2 form can be used, and returns a floating-point approximation
of π/2 or −π/2 depending on the sign of y (or 0 if y is 0).

SETL does not currently have first class support for complex numbers, but for such a
number with real part x and imaginary part y, its phase is y atan2 x and its magnitude is
abs [x, y].

bit_and, bit_not, bit_or, bit_xor - bitwise logical ops

op bit_and (integer, integer) : integer

op bit_not (integer) : integer

op bit_or (integer, integer) : integer

op bit_xor (integer, integer) : integer

These operators treat integers as if they were expressed in 2’s complement with an infinite
sequence of leading 0 or 1 digits. For example, bit_not 1 = -2.

See also and, or, and not.

break - extract leading substring using character set

proc break (rw string s, string p) : string

An initial substring of s up to but not including the first character that is found in p (treating
p as a set of characters) is removed (broken off) from s and returned. If no character from
p appears in s, the return value is the initial value of s, and s is reduced to the empty
string ("").

See also the other SNOBOL-inspired intrinsics, namely any, len, match, notany, span, rany,
rbreak, rlen, rmatch, rnotany, and rspan.

The Library 10

call - indirect call

proc call (proc_ref, var args(*)) : var

All of the 0 or more args to call are read-only, so the procedure referenced through the
proc_ref value must not have any rw or wr arguments. It may, however, return a result of
any type, including tuple, so multiple values can easily be returned, e.g.:

f_ref := routine f;

...

[x, y, z] := call (f_ref, a, b);

...

proc f (v, w);

...

return [p, q, r];

end proc f;

callout - call C function

proc callout (integer service, om, tuple arglist) : string

This is a SETL2 compatibility feature. It calls a C function having the signature

char *setl2_callout (int service, int argc, char *const *argv)

by first converting service to a C int and arglist (which must contain only strings) to
the pair of callout arguments argc (the number of strings) and argv (an array of pointers
to C character strings).

The result of the call, a C character string, is then converted to a SETL string and returned
by callout.

GNU SETL comes with a “stub” version of setl2_callout that simply reports details of
the call on stderr and then returns a NULL pointer, causing callout to return om.

ceil - ceiling (least integer upper bound)

op ceil (real) : integer

op ceil (integer) : integer

This operator returns the smallest integer that is greater than or equal to the given operand.

For example, ceil -5.9 = -5.

Floating-point infinities and NaN (Not a Number) values give om.

See also floor, round, fix, and float.

char - character encoding of small integer

op char (integer) : string

This operator makes a one-byte string rather directly from the operand, which must be an
integer in the range 0 to 255. For example, char 32 = "\x20".

In SETL, NUL characters may occur within strings, so char 0, or equivalently "\x00", is
valid.

See also ichar.

The Library 11

chdir - change directory

proc chdir

proc chdir (string s)

The current working directory (“folder”) is changed to s if given and valid. Otherwise, if
the HOME environment variable is defined and names a valid directory, the working directory
becomes that.

It is an error for chdir to be called with no arg if HOME is not defined.

If s is given but not valid, or if s is not given and HOME is defined but not valid, then the
current working directory is not changed, and last_error tells why. For example, the reason
might be a nonexistent directory, a file that is not a directory, or insufficient permission to
open the directory, as ruled by POSIX chdir().

See also getwd.

clear_error - clear system error indicator

proc clear_error

Sets last_error to no_error.

For example, a doubtful chdir call could be guarded thus:

clear_error;

chdir ("somewhere");

if last_error = no_error then

-- success ...

else -- the string last_error explains
-- failure ...

end if;

clock - elapsed time in milliseconds

proc clock : integer

This is the total amount of wall-clock (“real”) time, in milliseconds, that has elapsed since
the current process began. It is a monotonic clock, and does not depend on changes to the
time within the epoch.

See also time and tod.

close - close stream

proc close (stream f)

proc close (stream f, integer how)

If f is a stream, i.e., if is_open f is true, then it is flushed as if by flush and destroyed.
Any stream associated with f by tie is also flushed, and the association is dissolved. Output
failures in the flushing are not reflected in last_error.

The underlying file descriptor (f itself or the associated fd) is passed to POSIX close()

if it is in the range of valid file descriptors at the POSIX (system) level. That range is 0
to some maximum. Most Unix shells have a built-in ulimit or limit command to report

The Library 12

or set the limit. For example, in Bourne-compatible shells, ‘ulimit -n’ gives the current
maximum fd plus 1.

It is permitted to call close on stdin, stdout, and stderr.

You can also call close on a fd f that is not open at the SETL level but is open at the
POSIX level, e.g. as inherited by the process, or as arising from a call to one of the low-level
functions dup, dup2, socketpair, pipe, or recv_fd. This just calls POSIX close() on the
fd.

Closing a stream of type "signal", "ignore", "default" (see [Signal streams], page 44),
or "real-ms" (see [Timer streams], page 46) can change the disposition of a signal. The fd
is a pseudo-fd for these stream cases, outside the range of valid POSIX file descriptors.

As a trivial and dubious convenience, close(om) is a no-op.

The how argument to close, if present, must be one of the constants close_await (default),
close_autoreap, or close_zombie. This second argument is meaningful for pipe, pump,
and tty-pump streams (when the stream is the original one created by the caller, not one
obtained from a duplicated fd), as follows:

• If how is close_await, then close effectively does a waitpid on the child process
ID, passing a waitflag of true. This causes close to block until the child process
terminates. The termination status is then available in status, except in the unusual
case that the status has already been reaped, e.g. by an explicit and probably misdirected
waitpid before the close. In that case, close sets status to om.

• If how is close_autoreap, then close does not block the program in a wait for the
child process to terminate, but reaps and discards the status in the background if it
does so.

• If how is close_zombie, then close does not block the program in a wait, nor does it
reap the termination status in the background. If the child process terminates before the
parent, it will become a zombie (as defined by POSIX) until a waitpid (or equivalent)
successfully reaps its status. You can open a SIGCHLD signal stream to get notified of
child terminations.

Failure of the POSIX-level close() causes last_error to be set. In the case of
how = close_await on a pipe, pump, or tty-pump stream, the POSIX waitpid() call after
that can also set last_error, in the circumstances that set status to om described above.

When a Unix-domain server socket (openmode "unix-server" or "unix-datagram-server")
is closed, its associated pathname is removed if it still exists.

Streams that were automatically opened are automatically closed when appropriate. See
[Automatic opening], page 47.

All streams are automatically flushed and drained, and then all closed, before the program
exits. See [Buffering], page 47.

See shutdown about shutting down one or both directions of a bidirectional communications
stream without closing the stream itself.

The Library 13

close_await, close_autoreap, close_zombie - constants for
use with close

close_await : integer

close_autoreap : integer

close_zombie : integer

See close.

command_line - command-line arguments

command_line : tuple

This is a tuple of strings giving the command-line arguments that were passed to the SETL
program when it was launched.

See also command_name.

command_name - command name

command_name : string

This is an implementation-defined name for the SETL program.

For GNU SETL, if the SETL program comes from an file or command, command_name is
the name of that file, or the command string, including the leading vertical bar in the
case of a command. Otherwise (i.e., when the program is read from a file descriptor, from
standard input, or from the command-line argument itself), command_name is the name of
the language processor command, normally setl.

For example, in POSIX, if this script is stored in the text file /tmp/help and made executable,
it should print ‘I’m /tmp/help’ and a newline when invoked:

#! /usr/bin/env setl

print ("I’m", command_name); -- like shell’s $0 or C’s argv[0]

Note the use of the ‘#!’ escape (see Section “#! invocation” in the GNU SETL User Guide).

See also command_line.

cos - cosine

op cos (real) : real

op cos (integer) : real

The operand is in radians. See also acos.

cosh - hyperbolic cosine

op cosh (real) : real

op cosh (integer) : real

Hyperbolic cosine. Popular with catenarians.

date - date and time of day

proc date : string

Equivalent to fdate (tod, "%c").

See also clock and time.

The Library 14

denotype - type of denotation in string

op denotype (string s) : string

If s contains a denotation that would be acceptable to unstr, then denotype s =
type unstr s, but if s is some other string, then the advantage of checking it with
denotype first is that denotype returns om instead of taking exception to it as unstr would.

See also val and str.

div - integer division

op div (integer, integer) : integer

SETL’s div operator truncates fractional results towards zero.

It is an error for the second operand (denominator) to be zero.

See also slash (/), and for remainders see mod and rem.

domain - domain of map

op domain (set) : set

The operand must be a set of ordered pairs, that is, a set of 2-tuples in which no element is
om. The result is the set of all first members of those pairs.

See also range and lessf.

dup, dup2 - duplicate a file descriptor

op dup (integer fd) : integer

op dup2 (integer fd1, integer fd2) : integer

These are direct interfaces to POSIX dup() and dup2(), useful when you want low-level
control over system-level file descriptors, e.g. to play games with socketpair (or pipe) and
fork and exec.

The new fd produced by dup or dup2 is not automatically open at the SETL level, though
you can use open or one of the auto-opening intrinsics on it subsequently (see [Automatic
opening], page 47).

In dup2, there is an implicit POSIX close() of fd2 before the duplication of fd1 occurs.
If fd2 is already open at the SETL level, any buffer structure it has remains intact (see
[Buffering], page 47). Thus if fd2 has an output buffer, it is usually best to flush it if
necessary before the dup2 call, so that the redirection to a new sink (fd1) only applies to
new output. This is similar to the case of a buffered fd across a fork.

Example:

dup2 (stdout, stderr)

redirects stderr to wherever stdout points, like the shell notation ‘2>&1’.

On failure, dup and dup2 set last_error and return om.

The Library 15

eof - end-of-file indicators

proc eof : boolean

proc eof (stream) : boolean

When a stream input operation fails to get any input, two eof indicators are set: a global
one and a stream-specific one, accessed respectively by the nullary and unary forms of this
intrinsic.

The eof indicators are cleared by sequential input intrinsics (and by recv_fd and gets)
before they attempt input, and are only set when no input at all is received. Thus a getb

that asks for 3 values but only gets 2 does not set the eof indicators, even though an end of
file on the underlying medium has been reached. The stream’s eof indicator is pending in
that case, meaning that a subsequent input attempt on that stream will get nothing and
will set the eof indicators. The setting will happen even if the attempt is for no input, such
as for 0 values in the case of getb, 0 characters in the case of getn or gets, or 0 lines in the
case of geta.

A vacuous input attempt like that is thus a way to convert a pending eof to a true result
from the eof intrinsic, making it no longer pending. I haven’t worked out whether that use
case is plausible or more likely symptomatic. I have not wanted it yet.

A vacuous input attempt on a stream for which eof is not pending is an unconditional
way of clearing the eof indicators. Again, this is not something I have felt moved to do in
practice.

Besides ordinary end-of-file conditions such as reaching the end of a medium, the eof

indicators may also be set by input errors. These can be distinguished from normal end of
file using last_error. A stream may have a pending setting of last_error when it has a
pending eof; the actual setting occurs when the eof indicators are set.

Setting the eof indicators also triggers auto-closing when appropriate (see [Automatic
opening], page 47). Note that closing a stream invalidates the unary form of eof for that
stream, as it has been destroyed by then, while the nullary form remains valid.

For some input sources, an eof indication of true does not necessarily mean that further
attempts to read from that source will fail. For example, when the stream is connected to a
terminal with the normal cooked line discipline settings, a ctrl-D instead of an input line
typically makes getline yield om and eof yield true, but another getline after that will
yield another string if another line is then entered at the terminal.

See get, geta, getb, getc, getchar, getfile, getline, getn, gets, peekc, peekchar,
read, reada, and recv_fd; but do not see recv, recvfrom, seek, sys_read, nor ungetc,
as they never set eof.

even - test for integer divisible by 2

op even (integer) : boolean

Divisible by 2. Not odd. See also mod.

Note that the precedence of this operator is quite low, like that of other unary predicates,
and well below that of unary non-predicates (see [Operator Precedence], page 84). Its
relative precedence was higher in the original CIMS SETL.

The Library 16

exec - execute another program in place of current one

proc exec (string file)

proc exec (string file, tuple argv)

proc exec (string file, tuple argv, tuple envp)

This is a low-level interface to POSIX execvp() or execve() depending on whether the
envp argument is supplied.

If envp is present, execve() is used, which requires that file be a full pathname identifying
a command.

If the envp argument is not given, then execvp() is used, so the PATH environment variable
is searched for a directory containing an executable named file unless file contains a slash
(/) character. The POSIX implementation defines what happens if PATH isn’t defined, but a
default search of /bin and /usr/bin is common.

If the second argument (argv) appears, it must be a tuple of strings giving the arguments
that will be supplied to the command, beginning with the 0th which conventionally is the
name by which the command identifies itself. A missing argv defaults to the one-element
tuple [file].

If envp is present, it must be a tuple of strings defining the environment variables to be
seen by the command. Each string is of the form "name=value". Otherwise, the existing
environment is inherited.

If exec is successful, it does not return; the current process is replaced in that its image in
memory is replaced by that of the new command. The process ID does not change.

Signals that are being caught because of an open "signal" stream are set to their POSIX
defaults in the new execution context. If any "real-ms" timer streams are open (which is
not the case in a new child of fork), SIGALRM is also set to the POSIX default (SIG_DFL).
Other signal dispositions are inherited as POSIX SIG_DFL or SIG_IGN as appropriate. See
[Signal streams], page 44.

Compare filter, system, and the open modes "pipe-from", "pipe-to", "pump", and
"tty-pump", all of which use /bin/sh to invoke a shell command. One of those may be able
to achieve what you want more cleanly and directly than exec does.

If you want your SETL program to set up an environment and then replace itself with a
shell command, this would do the latter:

exec ("/bin/sh", ["sh", "-c", "command and args"]);

See also pipe_from_child, pipe_to_child, pump, and tty_pump for some ways beyond
fork to create a child process suitable for calling exec in.

exp - natural exponential (e raised to a power)

op exp (real) : real

op exp (integer) : real

See also log and the general exponentiation operator (**).

The Library 17

false - predefined boolean value

false : boolean

A starting point from which all conclusions are possible.

See also true.

fdate - format date and time

proc fdate (integer ms, string fmt) : string

proc fdate (integer ms) : string

The ms argument represents some number of milliseconds since 1 January 1970 UTC, to be
formatted as a date and time according to fmt, which defaults to "%a %b %e %H:%M:%S.%s %Z

%Y". For example, fdate (936433255888) might be ‘Sat Sep 4 04:20:55.888 EDT 1999’
if invoked in the POSIX locale in the US Eastern time zone, and fdate (tod) renders the
current calendar time.

The %-sign patterns in fmt are those defined for POSIX strftime() when applied to the
result of applying POSIX localtime() to ms div 1000, together with one extension: "%s"
expands to the low-order 3 decimal digits of ms. (Note: this meaning of "%s" differs from a
GNU extension to strftime(), where it means the number of seconds since the beginning
of 1970, a number that can be obtained in SETL as tod div 1000.)

See also date, which is equivalent to fdate (tod, "%c").

fexists - test for existence of file

op fexists (string) : boolean

Returns true iff POSIX stat() returns 0 on the given pathname.

Note that stat() does follow symbolic links, so fexists will only return true if an existing
file is found after following all links (and provided the caller has sufficient access to all
pathname components in reaching it).

Thus fexists is stricter than lexists, which uses POSIX lstat(). Both provide mere
snapshots, not automatically synchronized with actions by other processes. See link and
symlink for some ways to use files as mutual exclusion (mutex) locks.

See also fsize, readlink, and unlink.

Note the low precedence of this operator relative to unary non-predicates (see [Operator
Precedence], page 84). This differs from its precedence rank in SETL2.

filename - name of stream

op filename (stream) : integer

op filename (stream) : string

op filename (stream) : [integer, integer]

op filename (stream) : [string, string]

This is some form of the “name” under which the given stream was opened, as follows.

For an ordinary file, it is the string name passed to open or used to auto-open the file (see
[Automatic opening], page 47), or the name assigned by mkstemp.

The Library 18

For a Unix-domain socket, it is the pathname used at open time. See [Unix-domain sockets],
page 43.

Similarly, for a subprocess started by open mode "pipe-from", "pipe-to", "pump", or
"tty-pump", it is the command string that launched that subprocess. See [Connected
subprocesses], page 44.

For a signal-catching, -ignoring, or -defaulting stream, the name is returned in the same
case and spelling (i.e., with or without the SIG prefix) as was originally used to open the
stream. See [Signal streams], page 44.

For a "real-ms" stream, filename returns a pair of numbers [initial, interval], each
representing milliseconds. See [Timer streams], page 46.

For a TCP or UDP socket stream, it returns a pair [node, service], where node is a
string host name or Internet address (IPv4 dotted or IPv6 colon-rich), or is om to signify
an unspecified address (as is common for servers); and service is a string service name
or port number, converted as if by str if the original spec was an integer. See [TCP and
UDP sockets], page 42.

Finally, for a stream created by accept, pipe_from_child, pipe_to_child, pump, or
tty_pump, or a stream over a fd that was already open at the system (POSIX) level,
the “name” is simply the integer fd.

It is an error to call filename on a fd that is not open at the SETL level, even though it
may be open at the system level.

See also is_open, fileno, port, sockaddr, peer_sockaddr, peer_name, ip_names, and
ip_addresses.

fileno - file descriptor of stream

op fileno (stream f) : integer

If f exists as a stream according to is_open, fileno returns its underlying POSIX file
descriptor (fd) or, for a signal-related stream (see [Signal streams], page 44) or timer stream
(see [Timer streams], page 46), its pseudo-fd.

It is an error to apply fileno to anything else. The fact that GNU SETL kindly stops
everything and issues a diagnostic leads to the following non-portable idiom in programs
that would rather crash immediately than continue with a bad result from open:

fd := fileno open (f, ...);

See also filename.

filepos - current file position or #bytes transferred

op filepos (stream f) : integer

Similar to seek (f, 0, seek_cur), but does not flush or drain the stream before giving its
result. Thus while the result of seek always matches the OS-level file position, filepos
takes into account any buffered output bytes that have not been written out yet at the
system level and any buffered input that has not yet been consumed by the SETL program;
it gives the offset that would obtain as if the flushing or draining had occurred.

Also, filepos is allowed even on non-seekable streams, where it returns the number of bytes
that have been read and/or written since the stream was opened.

The Library 19

Finally (again in contrast to seek), filepos does not attempt to auto-open f, but requires
that f already be open (see open).

filter - filter string through external command

proc filter (string cmd, string input) : string

proc filter (string cmd) : string

This feeds the string input into an external command and returns its output.

The cmd argument specifies a shell command, which is performed as if by
exec ("/bin/sh", ["sh", "-c", cmd]) in a child process spawned as if by pump.

The command may read from its standard input and/or write to its standard output. The
input arg (default "") is fed to the child’s standard input while the content of its standard
output is being captured.

When all of input has been fed to the child, the end of the pipe that does the feeding is
closed, causing an end of file condition to be presented to the child’s standard input.

Meanwhile, when an end of file condition is seen by the SETL program on the capturing end
of the pipe, signifying that the child’s standard output has been closed, POSIX waitpid()

is called in an attempt to get the child’s exit status, and the captured output is returned by
filter.

Just as with system, the signals SIGINT and SIGQUIT are temporarily ignored in the
parent while it waits for the child to complete. Thus a terminal-generated signal (typically
ctrl-C for SIGINT and ctrl-\ for SIGQUIT) that goes to the process group will be seen by
the child but not the parent, which remains to handle the child termination. Also as with
system, SIGCHLD is not blocked during the filter call.

The termination status of the /bin/sh invocation is placed in status. By convention, 0
means a successful command execution. In the event that the final POSIX waitpid()

call to get that status fails, status is set to om and the reason for the failure appears in
last_error, just as in the similar scenario of close with the close_await parameter.

See also fork, pipe_from_child, pipe_to_child, tty_pump, socketpair, pipe, dup, and
dup2; and the open modes "pipe-from", "pipe-to", "pump", and "tty-pump".

fix - truncate real number to integer

op fix (real) : integer

op fix (integer) : integer

Truncation of real operands is towards zero; integer operands are simply returned.

Example: fix -5.6 = -5.

Floating-point infinities and NaN (Not a Number) values give om.

See also ceil, floor, round, and float.

fixed - format number with optional decimal point

proc fixed (real x, integer wid, integer aft) : string

proc fixed (integer x, integer wid, integer aft) : string

The Library 20

The number float x is converted to a string of length abs wid or more, with aft digits
after the decimal point.

If aft is zero, there is no decimal point, and you might as well use whole instead of fixed.
Negative aft is an error.

If abs wid is larger than necessary, the string is padded with blanks on the left (for positive
wid) or on the right (for negative wid).

If abs wid is too small, a longer string is produced as necessary to accommodate the number.

It is possible for the conversion to result in the string "nan", "inf", or "infinity", with
or without a minus sign in front.

See also floating, str, and strad.

float - convert number to real

op float (integer) : real

op float (real) : real

If integers are unbounded, and reals are not, it is possible for this conversion to produce
a floating-point infinity. On a 64-bit IEEE 754 implementation, this will happen for any
integer of magnitude 2**1024 or more, a 309-digit integer in decimal.

Also, loss of precision can occur for integers too big to fit in the mantissa (significand) of a
bounded floating-point representation. In the 64-bit IEEE 754 case, this means that integers
of magnitude at most 2**53 will be reproduced with absolute fidelity by float. Beyond
that, the gaps in coverage begin, starting with the odd numbers.

Applied to a real, float simply returns it.

See also fix, ceil, floor, and round.

floating - format number in scientific notation

proc floating (real x, integer wid, integer aft) : string

proc floating (integer x, integer wid, integer aft) : string

The number float x is converted to a string of length abs wid or more in scientific notation,
with one digit before the decimal point, aft digits after it, and the string "e+dd" or "e-dd"
after that, where the latter stands for “times 10 to the power of dd (or -dd)”, and dd has at
least 2 digits.

If aft is zero, there is no decimal point; aft must not be negative.

If abs wid is larger than necessary, the string is padded with blanks on the left (for positive
wid) or on the right (for negative wid).

If abs wid is too small, a longer string is produced as necessary to accommodate the number.

It is possible for the conversion to result in the string "nan", "inf", or "infinity", with
or without a minus sign in front.

See also fixed, whole, str, and strad.

The Library 21

floor - floor (greatest integer lower bound)

op floor (real) : integer

op floor (integer) : integer

This operator returns the largest integer that is less than or equal to the given operand.

For example, floor -5.1 = -6.

Floating-point infinities and NaN (Not a Number) values give om.

See also ceil, round, fix, and float.

flush - flush output buffer

proc flush (stream)

All buffered output for the given stream is written out using POSIX write(), blocking the
program if necessary until the entire buffer has been written.

If POSIX write() fails, last_error is set, and the number of bytes written is then
indeterminate.

Applying flush to a stream with no pending output (which is always the case for a read-only
or datagram stream) has no effect, not even on last_error.

For most use cases, flushing is done automatically when it needs to be. Some auto-flushing
can also be arranged using tie. See [Buffering], page 47.

See also open, close, and is_open.

fork - fork into parent and child process

proc fork : integer

This is an interface to POSIX fork() with accommodations for SETL.

In the parent process, fork returns an integer representing the process ID of the child.

In the child, fork returns 0.

All output buffers are flushed as if by flush before the spawning attempt, possibly causing
some blocking. Output errors in the flushing are suppressed, and not reflected in last_error.

In the child, before fork returns, all unread input on signal streams is drained (discarded),
all timer streams (open mode "real-ms") are closed (see [Signal streams], page 44), and
the time base for elapsed time (see clock) is reset to 0.

If the system cannot spawn a new process, fork sets last_error and returns om, in contrast
to all other intrinsics, which consider spawning failures errors.

In many cases, simply using system, filter, pipe_from_child, pipe_to_child, pump,
tty_pump, or one of the open modes "pipe-from", "pipe-to", "pump", or "tty-pump" will
be easier than dancing with fork, exec, socketpair (or pipe), dup2, close, and waitpid.

See also getpid, pexists, and kill.

The Library 22

from - take arbitrary element from set

op from (wr var x, rw set s)

An element of the set s is chosen arbitrarily (but probably not randomly), removed from s,
and assigned to x.

If s is empty, x := om instead.

Currently, from is a statement form, not actually an operator.

See also arb, fromb, frome, less, lessf, and the minus operator (-) as applied to sets.

fromb - take from beginning of string or tuple

op fromb (wr string x, rw string s)

op fromb (wr var x, rw tuple s)

The string or tuple s is stripped of its first element (a one-character string if s is a string),
and that element is assigned to x.

If s is of length 0, x := om instead.

Currently, fromb is a statement form, not actually an operator.

See also from and frome.

frome - take from end of string or tuple

op frome (wr string x, rw string s)

op frome (wr var x, rw tuple s)

The string or tuple s is stripped of its last element (a one-character string if s is a string),
and that element is assigned to x.

If s is of length 0, x := om instead.

Currently, frome is a statement form, not actually an operator.

See also from and fromb.

fsize - size of file in bytes

op fsize (stream f) : integer

op fsize (string pathname) : integer

If the operand is a stream, fsize returns the size of the thing that is open (see is_open).
More precisely, it returns the value of the st_size field in the POSIX struct stat, which
is only required to be meaningful for files, though particular implementations of POSIX
fstat() may extend its meaning to other things.

If the operand is not a stream, POSIX stat() is tried on it to get a size, again from the
st_size field.

Errors in fstat() or stat() cause fsize to set last_error and return om.

Like fexists, fsize gives just a snapshot, not automatically synchronized with updates by
other processes.

See also open and ftrunc.

The Library 23

ftrunc - set size of file in bytes

op ftrunc (stream f, integer length)

op ftrunc (string pathname, integer length)

The file associated with the writable stream f or, if f is not a stream, the writable file named
by pathname, is resized to the given length, truncating the file or extending it as necessary.
When extended, it is padded with NUL characters (\0), possibly in a way that is optimized
by the underlying file system.

For the stream case, f is first flushed as if by flush (but ignoring output errors) and drained.
See [Buffering], page 47.

The underlying POSIX call is then ftruncate() for f and truncate() for pathname. Errors
are reflected in last_error.

See also open and fsize.

get - read lines from stdin

proc get (wr string args(*))

Equivalent to geta (stdin, args(*)).

This signature for get follows that of SETL2, while geta is patterned after the old CIMS
SETL get. This makes the signatures of get and geta consistent with those of read and
reada.

geta - read lines from stream

proc geta (stream f, wr string args(*))

Zero or more lines are read from the stream f and assigned to the succeeding args in order,
as strings. If an end of input (end of file or error) is reached before all those arguments have
been assigned to, trailing arguments are set to om. If it is reached before any have been
assigned to, the eof indicators are set.

If f is not already open, an attempt is made to auto-open it, for reading or for bidirectional
I/O depending on the form of f. See [Automatic opening], page 47.

Lines are terminated by newline (\n), and there is no restriction on line length. The newline
character is not delivered as part of each assigned string, and the final line before the end of
input need not be terminated by a newline.

There is no distinction between “text” and “binary” files, nor any special processing of
carriage return (\r).

The rules on auto-flushing f’s output associations, on setting last_error, and on auto-
closing are as for getc.

The operator-form getline in place of geta may often be stylistically preferable.

See also open, get, getb, getn, gets, peekc, reada, puta, and printa.

getb - read values from stream

proc getb (stream f, wr var args(*))

Zero or more values are read from the stream f and assigned to the succeeding args in
order. If an end of input (end of file or error) is reached before all those arguments have

The Library 24

been assigned to, trailing arguments are set to om. If it is reached before any have been
assigned to, the eof indicators are set.

If f is not already open, an attempt is made to auto-open it. See [Automatic opening],
page 47.

Values written by putb or writea, except for atoms (see newat) and procedure references
(see routine), are readable by getb. Tokens denoting values are separated by whitespace
(ERE "[\f\n\r\t\v]+") and converted as if by unstr.

There is a difference between getb and reada in that after reading the requested number of
values, reada continues reading characters until it either absorbs a newline (\n) or encounters
an end of input, whereas getb stops right after the end of the last value read.

The rules on auto-flushing f’s output associations, on setting last_error, and on auto-
closing are as for getc.

See also geta, getline, getfile, getn, and val.

getc - read character from stream

op getc (stream f) : string

One character is read from the stream f and returned as a string of length 1. If an end
of input (end of file or error) is reached instead, getc sets the eof indicators and possibly
last_error, and returns om.

If f is not already open, an attempt is made to auto-open it. See [Automatic opening],
page 47.

If eof is set by getc for an auto-opened sequential stream, the stream is auto-closed, leaving
the nullary eof true and the unary eof(f) invalid.

The getc intrinsic, like all input intrinsics, automatically flushes any output buffered for
f and for any stream associated with f by tie before attempting input. It does not set
last_error on output failures in the flushing, but you can flush explicitly before the input
operation if details on such failures are of interest.

See also getchar, getfile, getline, getn, gets, geta, getb, peekc, reada, ungetc, and
putc.

getchar - read character from stdin

proc getchar : string

Equivalent to getc (stdin).

getegid - get effective group ID

proc getegid : integer

Returns the result of calling the POSIX getegid() function.

See also getgid, setegid, setgid, geteuid, getuid, seteuid, and setuid (details and
example).

The Library 25

getenv - get value of environment variable

op getenv (string) : string

If the environment variable named by the operand exists, its value is returned; otherwise
you get om.

See also setenv and unsetenv.

geteuid - get effective user ID

proc geteuid : integer

Returns the result of calling the POSIX geteuid() function.

See also getuid, seteuid, setuid (details and example), getegid, getgid, setegid, and
setgid.

getfile - read stream up to the end

op getfile (stream f) : string

Zero or more characters are read from the stream f until an end of input (end of file or
error) is reached, and returned as a string.

If f is not already open, an attempt is made to auto-open it. See [Automatic opening],
page 47. As usual, if the file was automatically opened, it is automatically closed on end of
input.

The getfile intrinsic is unique in that if it fails on the auto-open attempt, it returns om
rather than considering the failure erroneous. This helps to discourage racy code like

x := if fexists f then getfile f else "some default" end;

when

x := getfile f ? "some default";

is race-free and serves a common use case. The latter is more or less equivalent to

fd := open (f, "r");

if fd /= om then

x := getfile fd;

close (fd);

fd := om;

else

x := "some default";

end if;

The eof indicators are always set by getfile. This does not matter to users, but allows
auto-closing to be defined as something that only happens upon the setting of the eof

indicators, as is the case for all other input intrinsics. On the other hand, this makes getfile
the only intrinsic that sets eof even when it succeeds in getting more than 0 input items.

The rules on auto-flushing f’s output associations, on setting last_error, and on auto-
closing are as for getc.

See also getline, getn, gets, getb, and putfile.

The Library 26

getgid - get real group ID

proc getgid : integer

Returns the result of calling the POSIX getgid() function.

Note that group IDs have no relation to process group IDs (see getpgrp).

See also getegid, setgid, setegid, getuid, geteuid, setuid (details and example), and
seteuid.

getline - read line from stream

op getline (stream f) : string

This is an operator-form alternative to geta for reading a single line.

Characters through the next newline (\n) if any are read from f and returned as a string,
without the newline. Thus the trailing newline is optional on the last line of a file except
when needed to signify an empty line there.

If no characters can be read, getline sets the eof indicators and returns om.

If the stream is not already open, an attempt is made to auto-open it. See [Automatic
opening], page 47.

The rules on auto-flushing f’s output associations, on setting last_error, and on auto-
closing are as for getc.

If respectability isn’t your thing, the expression

[getline f : until eof]

is a convenient way to read all the lines of a file into a tuple. If f is the name of a file that
was not previously open, this leaves the file closed after the tuple is accumulated, by the
usual rules of auto-opening and auto-closing.

The above expression only works because the om coming from the final getline call in the
loop is trimmed from the tuple.

See also open, close, putline, getfile, getb, getn, gets, reada, and printa.

getn - read fixed number of characters from stream

proc getn (stream f, integer n) : string

Up to n characters are read from the stream f and returned as a string. If an end of input
(end of file or error) is reached before n characters have been read, a shorter string is returned.
If it is reached before any characters have been read, the eof indicators are set and the
empty string ("") is returned.

If f is not already open, an attempt is made to auto-open it. See [Automatic opening],
page 47.

The rules on auto-flushing f’s output associations, on setting last_error, and on auto-
closing are as for getc.

See also getfile, getline, gets, and putc.

The Library 27

getpgrp - get process group ID

proc getpgrp : integer

Gets the process group ID of the calling process, or in other words the process ID of the
process group leader.

See also setpgid, getpid, getppid, getsid, pexists, kill, and waitpid.

getpid - get process ID

proc getpid : integer

Gets the process ID, in the POSIX sense, of the calling process.

See also pid, getppid, getpgrp, getsid, pexists, kill, and waitpid.

getppid - get parent process ID

proc getppid : integer

Gets the process ID of the parent of the calling process.

See also getpid.

gets - direct-access read

proc gets (stream f, integer start, integer n, wr string x)

The file under the readable, seekable stream f (open mode "r", "r+", "w+", "n+", or "a+")
is viewed as a string, where start specifies the index (1 or higher) of the first character to
read.

The gets intrinsic reads up to n characters and returns them as a string through the x arg.
If an end of input (end of file or error) is reached before n characters have been read, a
shorter string is returned. If it is reached before any characters have been read, the eof

indicators are set and the empty string ("") is returned.

If f is not already open, an attempt is made to auto-open it in "r+" mode, which allows
seeking, reading, and writing. See [Automatic opening], page 47.

If f was auto-opened in "r" (not "r+") mode, it will be auto-closed when gets sets eof.

As with seek, f is flushed of output (ignoring errors) and drained of input before the file is
repositioned. See [Buffering], page 47.

See also getfile, getn, puts, seek, and mkstemp.

getsid - get session ID

proc getsid : integer

proc getsid (integer p) : integer

Gets the POSIX session ID for process ID p, which is to say the process group ID of p’s
session leader. If p is 0 or omitted, the session ID of the calling process is returned.

On error, getsid sets last_error and returns om.

Sessions are used in job control—see setsid.

The Library 28

getuid - get real user ID

proc getuid : integer

Returns the result of calling the POSIX getuid() function.

See also geteuid, setuid (details and example), seteuid, getgid, getegid, setgid, and
setegid.

getwd - current working directory

proc getwd : string

Current working directory of the process.

See also chdir.

glob - pathname wildcard expansion

op glob (string) : [string, ...]

Using the POSIX glob() function with no flags and no error callback, glob expands the
pathname pattern given in the string operand to produce a tuple of strings. The empty
tuple is produced if there is no match to an accessible filename.

For example, if the current directory contains 3 .h files, then

glob "*.h"

might equal the tuple

["bar.h", "foo.h", "mumble.h"]

See also getwd and chdir.

gmark - find all occurrences of pattern in string

proc gmark (string s, pattern p) : [[integer, integer], ...]

The locations of all non-overlapping occurrences of the pattern p in the string s are returned
in left-to-right order as a tuple of pairs of integers [i, j], where each matched substring
can be addressed as s(i..j). If p does not occur in s, the empty tuple is returned.

For example:

• gmark ("banana", "an") is [[2,3], [4,5]]

• gmark ("banana", "ana") is [[2,4]], not [[2,4], [4,6]]

The pattern p is subject to the setting of magic, and can be a string or a 2-tuple, as detailed
under mark.

See also sub, gsub, and split.

gsub - replace patterns in string

proc gsub (rw string s, pattern p) : [string, ...]

proc gsub (rw string s, pattern p, string r) : [string, ...]

All non-overlapping occurrences in s of the pattern p are replaced by r, which defaults to
the empty string (""). The substrings of s that were matched by p are returned as a tuple
of strings in left-to-right order.

The Library 29

The pattern p is subject to the setting of magic, and can be a string or a 2-tuple, as detailed
under mark.

When magic is true, ampersands and backslash-digit sequences in the replacement pattern
r are expanded as in sub.

Example:

s := "abcd aabbccdd";

print (gsub (s, "a([bc]*)d", "&/<\\1>")); -- prints [abcd abbccd]

print (s); -- prints abcd/<bc> aabbccd/<bbcc>d

See also gmark and split.

hex - convert string to hexadecimal

op hex (string s) : string

Hexadecimal string representation of s. For example, hex "\011\xCf" = "09CF", and
hex char 16#dB = "DB".

In general, #hex s = 2 * #s.

See also unhex.

hostaddr - current host address

proc hostaddr : string

This is some plausible Internet address for the current host system, defined as the first
AF_INET or AF_INET6 address on the list returned by POSIX getaddrinfo() for the host
name obtained by POSIX gethostname(), in dotted IPv4 or colon-delimited IPv6 notation.

If gethostname() or getaddrinfo() fails, hostaddr sets last_error and returns om.

If getaddrinfo() succeeds but yields no addresses in the family AF_INET or AF_INET6, the
value of hostaddr is om but last_error is not set.

Uses for this function seem limited.

See also hostname, ip_addresses, and ip_names.

hostname - current host name

proc hostname : string

This is the “standard” name for the current host system as given by POSIX gethostname().

In the unlikely case that gethostname() fails, hostname sets last_error and returns om.

See also hostaddr, peer_name, ip_names, and ip_addresses.

ichar - integer code for character

op ichar (string) : integer

This operator interprets the one byte in the operand as an integer in the range 0 to 255. For
example, ichar "\x20" = 32, the code for an ASCII blank.

See also char.

The Library 30

impl - implication

op impl (boolean, boolean) : boolean

Here is the truth table defining this operator:

true impl true = true

true impl false = false

false impl true = true

false impl false = true

This seldom-used operator could have been short-circuited like and, or, and the query
operator (?), but isn’t. That is to say, both sides of impl are always evaluated.

This is no great loss, however, because it is usually more natural to write the short-circuiting
expression

q or not p

or

(not p) or q

than the propositional

p impl q

especially in the context of if or while tests.

The impl operator has the lowest precedence of any operator (see [Operator Precedence],
page 84).

in - membership test; iterator form

op in (var x, set s) : boolean

op in (var x, tuple s) : boolean

op in (string x, string s) : boolean

The keyword in plays a dual role in SETL. Depending on context, it is either the boolean-
valued membership test operator whose signature is given above, or the basis of a common
iterator form that occurs in loop headers, quantifiers, and set and tuple formers.

Here are two examples of its use in iterators, where x acts like a bound variable in each
iteration in that it is assigned successive members of a set or tuple s, or characters of a
string s:

for x in s loop

...

end loop;

squares := {x*x : x in s}; -- set former

In its other role, as a binary operator,

x in s

it is a type-dependent membership test:

• For a set s, it tells whether x occurs in s; om is never considered to be a set member.

• For a tuple s, it likewise seeks an occurrence of x in s, perhaps searching linearly; om is
considered present if the tuple has at least one hole, i.e., non-trailing om member.

• For a string s, it indicates whether x is a substring of s.

See also arb, from, and notin.

The Library 31

incs - subset test

op incs (set s, set ss) : boolean

Returns true when every member of ss is also in s. Thus

s incs ss

has the same truth value as

ss subset s

Its precedence is quite low, like that of other binary predicates. See [Operator Precedence],
page 84.

intslash - integer quotient type switch

intslash : boolean

By default, the result of dividing two integer values in SETL is real, as in Pascal and the
Algol family. This default corresponds to intslash = false. See the discussion of the slash
operator (/) for why it is best to leave it this way if possible.

See also set_intslash.

ip_addresses - internet host addresses

proc ip_addresses (string host) : {string, ...}

Returns a set of Internet addresses as strings in IPv4 dotted or IPv6 colon-separated notation,
for the host name or Internet address host.

POSIX getaddrinfo() is used to obtain the addresses.

For example,

ip_addresses ("uccs.edu")

might produce the set

{"128.198.1.50", "128.198.1.71", "128.198.4.52"}

If getaddrinfo() fails, last_error is set and the empty set is returned. The empty set
can be returned with no setting of last_error if getaddrinfo() succeeds but doesn’t find
any addresses in the AF_INET or AF_INET6 family for the given host.

See also ip_names, hostaddr, hostname, peer_name, and peer_address.

ip_names - internet host names

proc ip_names (string host) : {string, ...}

Returns a set of Internet host names for the host name or IPv4/IPv6 address host.

It is like ip_addresses but with each address translated to a name using POSIX
getnameinfo() if possible or omitted if not. For example,

ip_names ("uccs.edu")

might give the set

{"federation.uccs.edu", "klingon.uccs.edu", "warp.uccs.edu"}

and

ip_names ("::1")

The Library 32

might be

{"ip6-localhost"}

Failure of POSIX getaddrinfo() is treated the same as by ip_addresses, including the
setting of last_error. Failure of getnameinfo() on an address found by getaddrinfo()

is not reflected in last_error, but leaves a name out of the return set.

See also hostname and peer_name.

is_type - type testers

op is_atom (var) : boolean

op is_boolean (var) : boolean

op is_integer (var) : boolean

op is_map (var) : boolean

op is_mmap (var) : boolean

op is_numeric (var) : boolean

op is_om (var) : boolean

op is_real (var) : boolean

op is_routine (var) : boolean

op is_set (var) : boolean

op is_smap (var) : boolean

op is_string (var) : boolean

op is_tuple (var) : boolean

The operator is_map (or equivalently is_mmap, for multi-valued map) returns true if its
operand is a set consisting entirely of ordered pairs (tuples of length 2), none of which has
om as its first member.

The operator is_smap (single-valued map) adds the further condition that for a map f,
#domain f = #f; that is, that f takes each domain element to one range element.

The operator is_atom tests for a value created by newat, and is_routine tests for a value
created by routine.

See also type and denotype.

The type-testing operators have rather low precedence, like other unary predicates (see
[Operator Precedence], page 84).

is_open - test for being a stream

op is_open (stream f) : boolean

Tests whether f is one of the pre-opened streams stdin, stdout, or stderr; a stream returned
by open, accept, pipe_from_child, pipe_to_child, pump, tty_pump, or mkstemp; or an
automatically opened stream (see [Automatic opening], page 47).

Being a stream is the same as being open at the SETL level; a stream ceases to exist when
it is closed.

Although SETL provides no intrinsic specifically for testing whether a given plausible file
descriptor fd is open at the underlying POSIX level (an uncommon use case), dup2(fd,fd)
returns fd if it is, or sets last_error and returns om otherwise.

See also close.

Being a predicate, is_open has rather low precedence (see [Operator Precedence], page 84).

The Library 33

join - concatenate tuple of strings, with delimiter

proc join (tuple t, string glue) : string

All elements of the tuple t must be strings, and they are concatenated together, separated
by the delimiter string glue.

In general,

join (t, glue) = ("" +/ [glue+s : s in t])(#glue+1..)

Thus if t is the empty tuple ([]), the result is the empty string (""). Note that glue is not
used when the number of elements #t is 0 or 1, but must still be a string.

See also split.

kill - send signal to process

proc kill (integer p)

proc kill (integer p, integer signal)

proc kill (integer p, string signal)

Calls POSIX kill(). Among processes that the caller of kill has permission to send a
signal to, p is interpreted as follows.

If p is greater than 0, the signal is sent to the process with a process ID equal to p.

If p is 0, the signal is sent to every process whose process group ID is equal to that of the
caller.

If p is negative and not equal to -1, then -p is a process group ID, and the signal is sent to
every process in that group.

If p is -1, the signal is sent to every allowed process except for an unspecified set of system
processes. The signal may or may not be sent to the calling process. POSIX doesn’t address
this, but Linux excludes the caller in the -1 case.

If p indicates a nonexistent process or process group, the call has no effect except upon
last_error.

If signal is omitted, it defaults to "TERM", or equivalently "SIGTERM". Signals may be given
as integers or more portably as strings. Case is not significant. The signal names HUP,
INT, QUIT, ILL, ABRT, FPE, KILL, SEGV, PIPE, ALRM, TERM, USR1, USR2, CHLD,
CONT, STOP, TSTP, TTIN, and TTOU are defined by POSIX. A few other common
signals such as PWR and WINCH may also be defined.

As a special case, if signal is 0, no signal is sent, but the validity of p is checked and the
result is reflected in last_error.

See also pid, pexists, getpgrp, fork, pipe_from_child, pipe_to_child, pump, tty_pump,
system, filter, and the open modes "pipe-from", "pipe-to", "pump" and "tty-pump".

last_error - last error message from system function

last_error : string

After a clear_error call, last_error has the value no_error, and is referred to as not set.
Otherwise, it has the most recent setting by an intrinsic documented as being able to set
last_error.

The Library 34

More precisely, if an intrinsic does set it, it is to

• the error message returned by POSIX strerror() for the most recent setting of POSIX
errno, or

• the error message returned by POSIX gai_strerror() for the most recent failed POSIX
getaddrinfo() or getnameinfo() call.

len - extract leading substring by length

proc len (rw string s, integer n) : string

An initial substring of length n min #s is removed from s and returned. It is an error for n
to be less than 0.

See also the other SNOBOL-inspired intrinsics, namely any, break, match, notany, span,
rany, rbreak, rlen, rmatch, rnotany, and rspan.

less - set less given element

op less (set s, var x) : set

Definition: s less x = s - {x}.

See the set difference (minus) operator (-), and also from, lessf, and with.

lessf - map less given domain element

op lessf (set s, var x) : set

The set s must be a map. The lessf operator returns a copy of the map in which all pairs
having x as a first (i.e., domain) element are removed.

See also less and from.

lexists - test for existence of file or symlink

op lexists (string) : boolean

Returns true iff POSIX lstat() returns 0 on the given pathname.

Note that lstat() does not follow symbolic links, so lexists returns true for any existing
pathname (provided the caller has sufficient access to all pathname components in reaching
it), even a dangling symlink (one that refers to a file that doesn’t exist).

Thus lexists is less strict than fexists, which uses POSIX stat(). Both provide mere
snapshots, not automatically synchronized with actions by other processes. See link and
symlink for some ways to use files as mutual exclusion (mutex) locks.

See also readlink and unlink.

Like fexists, this predicate has rather low precedence (see [Operator Precedence], page 84).

link - create hard link

proc link (string f, string new)

Creates a link (hard link) new to the existing file f using POSIX link(), if new does not
exist before the call.

The Library 35

If link succeeds, new and f then refer to the same file. Otherwise, such as when new already
exists, last_error is set.

Given stable directory structures above f and new, link behaves atomically, and can be
used as a test-and-set mechanism for inter-process synchronization: the mutex (lock file)
new is acquired if and when link succeeds, and releasing it is done atomically by unlink.

See also fexists, symlink, and rename, and the open modes "n" and "n+".

log - natural logarithm

op log (real) : real

op log (integer) : real

The operand must be greater than 0.

See also exp.

lpad - pad string on left with blanks

proc lpad (string s, integer n) : string

If n > #s, the returned string is s padded on the left with blanks to length n. Otherwise, s
is returned.

It is an error for n to be less than 0.

See also rpad, which left-justifies by padding on the right.

magic - regular expression recognition switch

magic : boolean

This is a global modal switch.

By default, magic is true, meaning that subscripting and slicing of subject strings like say
s by pattern strings p, p1, and p2 in expressions like s(p) and s(p1..p2) interprets the
pattern strings as POSIX extended regular expressions (EREs). This also affects sub, gsub,
mark, gmark, and split.

You can assign magic := false, or call set_magic (false), to cause pattern strings to be
interpreted literally, i.e., as strings to be matched exactly somewhere in s.

mark - find first occurrence of pattern in string

proc mark (string s, pattern p) : [integer, integer]

The location of the first (leftmost) occurrence of the pattern p in the string s is returned as
a pair of integers [i, j] which index the first and last characters in the substring matched
by p, i.e., s(i..j).

If there is no such occurrence, om is returned.

With magic left at its default setting of true, a string-valued p is interpreted as a POSIX
extended regular expression (ERE).

If magic is false, a string-valued p is interpreted literally as the substring of s to match.

If p is a pair [p1, p2] of strings, it represents a pattern that begins with p1 and ends with
the first subsequent occurrence of p2. The setting of magic applies to each of p1 and p2.

The Library 36

There can be any characters between p1 and p2, regardless of magic—sort of like the ERE
".*", but not so greedy.

As with the SETL expression s(p1..p2), the substring of s matched by a pattern pair
begins with the first character of the first substring matching p1 and ends with the last
character of the first substring matching p2 after that.

Also in line with SETL s(p1..p2) expressions, either or both of p1 and p2 may be an
integer index rather than a pattern-bearing string, again irrespective of magic. If p1 is an
integer, it simply becomes the i in the returned [i, j]. If p2 is an integer, j is the greater
of p2 and i-1.

Like in string subscripting expressions, p can be an integer, in which case mark returns
[p, p] if p <= #s, or [p, p-1] otherwise.

See also gmark, sub, and gsub.

match - extract leading substring by exact match

proc match (rw string s, string p) : string

If p is an initial substring of s, i.e., if s(1..#p) = p, it is removed from s and returned.
Otherwise, nothing happens to s and the empty string ("") is returned.

See also the other SNOBOL-inspired intrinsics, namely any, break, len, notany, span, rany,
rbreak, rlen, rmatch, rnotany, and rspan.

max - maximum

op max (integer, integer) : integer

op max (real, real) : real

op max (integer, real) : integer

op max (integer, real) : real

op max (real, integer) : integer

op max (real, integer) : real

op max (string, string) : string

op max (tuple, tuple) : tuple

Strings are compared character by character, as if using the codes arising from ichar. Tuple
comparisons are element by element, and recursive. If one string or tuple is a prefix of the
other, the longer one is considered larger.

For mixed numeric modes, the integer is converted to real before comparison, but the
result has the type of the larger, or of the first operand in case of a tie.

If either operand is a floating-point NaN (Not a Number), the result is a NaN. Contrast
POSIX fmax(), which returns the non-NaN arg when there is just one.

Examples:

1 max 2 = 2 -- max is a binary operator
max/ [1, 2, 3] = 3 -- max/ t gives max over set or tuple t

x max/ [] = x -- but unary max/ [] is erroneous

See also the order-based comparatives, and min.

The Library 37

min - minimum

op min (integer, integer) : integer

op min (real, real) : real

op min (integer, real) : integer

op min (integer, real) : real

op min (real, integer) : integer

op min (real, integer) : real

op min (string, string) : string

op min (tuple, tuple) : tuple

Strings are compared character by character, as if using the codes arising from ichar. Tuple
comparisons are element by element, and recursive. If one string or tuple is a prefix of the
other, the shorter one is considered smaller.

For mixed numeric modes, the integer is converted to real before comparison, but the
result has the type of the smaller, or of the first operand in case of a tie.

If either operand is a floating-point NaN (Not a Number), the result is a NaN. Contrast
POSIX fmin(), which returns the non-NaN arg when there is just one.

This operator is commonly used in the combining form, min/, over a set or tuple. See max
examples.

mkstemp - create and open temporary file

proc mkstemp (rw string template) : integer

The template must end in the characters "XXXXXX", which will be overwritten by characters
that make the resulting string contain the name of a file that does not currently exist.

Then a file with that name is created with read/write permissions for the owner and none
for others, using POSIX mkstemp(). A SETL open in "w+" mode is effectively performed
over that, and the resulting file descriptor is returned.

On failure, last_error is set and om is returned. The template is not modified in that
case.

The funky signature, with its read/write template arg, resembles that of the underlying
POSIX function.

See also seek, rewind, puts, gets, and filename.

mod - integer modulus; symmetric set difference

op mod (integer, integer) : integer

op mod (set, set) : set

SETL yields a non-negative remainder as the result of mod, following the usual mathematical
clock arithmetic definition. The sign of the denominator is immaterial, so:

5 mod 3 = 2

-5 mod 3 = 1

5 mod -3 = 2

-5 mod -3 = 1

See also rem and div.

The Library 38

The set-theoretic symmetric difference operator mod is analogous to the logical exclusive
or, and is likewise associative and commutative (unlike mod over integers, which is neither).
Two sets s and t can be swapped without an intermediate temporary variable thus:

s mod:= t; -- add the info in t to s

t mod:= s; -- take out the t, leaving old s

s mod:= t; -- take out the old s, leaving old t

See also the regular set difference (minus) operator (-).

nargs - number of arguments given by caller

nargs : integer

For procedures that take a variable number of arguments (i.e., have the token sequence (*)
after the final formal parameter, which the procedure sees as a tuple), nargs is the total
number of arguments supplied by the caller to the currently active procedure.

newat - create new atom

proc newat : atom

This creates a unique atom, whose salient property is merely that it is different from all
other atoms created by the current process. Atoms are like opaque pointers, and cannot
be meaningfully exchanged between programs. They are sometimes used to highlight the
domain independence of an abstract algorithm, but are otherwise rather useless. Real
applications tend to be expressed over concrete domains with fitting rules and conventions.

See also is_atom.

no_error - non-error message

no_error : string

This is the value of last_error immediately after a call to clear_error. It is typically
some locale-dependent version of "No error" or "Success".

not - logical negation

op not (boolean) : boolean

The unary predicate not has a precedence above and, or, and impl, but below that of all
the other binary operators and non-predicates. See [Operator Precedence], page 84. Still,
generous use of parentheses is recommended for readability and for ease of transliteration to
other languages.

See also the bitwise operators such as bit_not.

notany - extract leading character using character set

proc notany (rw string s, string p) : string

If the first character of s does not occur in p (treating p as a set of characters), that first
character is removed from s and returned. Otherwise, nothing happens to s, and the empty
string ("") is returned.

The Library 39

See also the other SNOBOL-inspired intrinsics, namely any, break, len, match, span, rany,
rbreak, rlen, rmatch, rnotany, and rspan.

notin - membership test

op notin (var x, set s) : boolean

op notin (var x, tuple s) : boolean

op notin (string x, string s) : boolean

Definition: (x notin s) = not (x in s).

npow - all subsets of a given size

op npow (integer n, set s) : set

op npow (set s, integer n) : set

Definition: s npow n = n npow s = {ss in pow s | #ss = n}.

This is the set of all subsets of s that have n members, or the empty set if n exceeds #s. It
is an error for n to be negative.

nprint - print to stdout with no trailing newline

proc nprint (var args(*))

Equivalent to nprinta (stdout, args(*)).

See also print and write.

nprinta - print to stream with no trailing newline

proc nprinta (stream f, var args(*))

The 0 or more args are written in sequence to the stream f, separated by single spaces.
String arguments are written directly; all others are converted as if by str first.

If f is not already open, an attempt is made to auto-open it. See [Automatic opening],
page 47.

Note that the output of the program

nprinta (stderr, 1, 2);

is ‘1 2’, which is not the same as the output of the program

nprinta (stderr, 1);

nprinta (stderr, 2);

which is ‘12’.

On output error, output may be incomplete and last_error may be set.

See also nprint, printa, and writea.

odd - test for integer not divisible by 2

op odd (integer) : boolean

Not even, though it shares the rather low precedence of that predicate.

The Library 40

om - the undefined value

om

This is the default value of all uninitialized SETL variables, undefined set, range, or tuple
elements, the implicit return value of all routines that do not return anything else, and the
default result of many operations when they fail in ways that are not held to be errors.

Ideal if nothing is what you want. Sounds nice when said slowly. Depicted as a capital
omega in the ancient texts. Could stand for omitted in some places.

See also is_om, type, denotype, str, and unstr.

open - open a stream

proc open (stream f, string how) : integer

Tries to create a stream for f, where f may be

• a string such as a filename, other pathname, command, or signal name,

• a tuple representing an interval timer or Internet service location, or

• an integer fd that is already open at the POSIX (operating system) level but not at the
SETL level (see below).

How f is interpreted depends on the mode argument, how. See [Arguments to open], page 40.

On success, the returned fd (or pseudo-fd, for a signal or timer stream) serves as a stream
handle for use in SETL I/O. The fd is then “open at the SETL level”. The stream
incorporates relevant state and buffer structure. See [Buffering], page 47.

On failure due to external factors such as a missing file, open sets last_error and returns
om.

The open described here is almost upwardly compatible with the old CIMS SETL open.
It is completely compatible for programs which ignored the return value, because all I/O
intrinsics in the present SETL accept as a stream specifier either the argument that was
originally passed to a successful open call (if the arg is unique) or the file descriptor (fd)
that was returned by it. This open is also compatible with SETL2 in that the fd serves as a
unique handle.

Arguments to open

Valid values of the case-insensitive I/O mode argument how, and their meanings, are:

mode meaning
"r" sequential and direct access input
"w" sequential and direct access output
"n" like "w", but new file only
"a" sequential output, append to file
"r+" direct access r/w, existing file
"w+" direct access r/w, empty file first
"n+" like "w+", but new file only
"a+" direct access read, write at end
"rw" sequential bidirectional I/O
"pipe-from" input from shell command
"pipe-to" output to shell command

The Library 41

"pump" I/O to and from shell command
"tty-pump" I/O to and from pty-wrapped command
"tcp-client" TCP client socket
"tcp-server" TCP server socket
"tcp-peer" connected TCP socket
"udp-client" UDP client socket
"udp-server" UDP server socket
"unix-client" Unix-domain stream client socket
"unix-server" Unix-domain stream server socket
"unix-peer" connected Unix-domain stream socket
"unix-datagram-client" Unix-domain datagram client socket
"unix-datagram-server" Unix-domain datagram server socket
"signal" one input line per catch
"ignore" signal to be ignored
"default" signal to be given default effect
"real-ms" one input line per timer expiry

GNU SETL also has many synonyms for these I/O modes, perhaps best not used in new
code (see [Alternative how arguments to open], page 49).

For all of modes "r" through "unix-datagram-server" above, f may be a file descriptor
(fd) that is already open at the POSIX level but not at the SETL level. More on that below.

Modes "r" through "rw" cause a POSIX open() call with the following flags:

mode POSIX open() flags seekable?
"r" O_RDONLY yes
"w" O_WRONLY | O_CREAT | O_TRUNC yes
"n" O_WRONLY | O_CREAT | O_EXCL yes
"a" O_WRONLY | O_CREAT | O_APPEND no
"r+" O_RDWR yes
"w+" O_RDWR | O_CREAT | O_TRUNC yes
"n+" O_RDWR | O_CREAT | O_EXCL yes
"a+" O_RDWR | O_CREAT | O_APPEND yes
"rw" O_RDWR no

A stream termed seekable is not actually known at the time of open to be on a file
supporting direct access. Where not, a seek, rewind, gets, or puts call will generally fail
on the underlying POSIX lseek() attempt, which is then considered erroneous.

Prior to that seeking attempt, any buffered output is flushed (written out to the file, ignoring
any output errors that may occur), and any buffered input is drained (discarded). See
[Buffering], page 47.

The "pipe-from", "pipe-to", "pump", and "tty-pump" modes cause an external program,
given as a shell command string, to be run as a subprocess whose standard input and/or
standard output is connected to the fd returned by open. See [Connected subprocesses],
page 44.

Modes "tcp-client", "tcp-server", "udp-client", and "udp-server" create network
socket streams, with f specifying an Internet host and service, except of course where f is
the fd of a socket that already exists at the POSIX level. The mode "tcp-peer" opens a
stream over the fd of a connected TCP socket. See [TCP and UDP sockets], page 42.

The Library 42

Modes "unix-client" through "unix-datagram-server" create the corresponding Unix-
domain socket streams, with f specifying a pathname for the socket in the local filesystem
space. For symmetry with "tcp-peer", the mode "unix-peer" can be used when f is the
fd of a connected non-datagram Unix-domain socket. See [Unix-domain sockets], page 43.

The term stream for datagram sockets is a bit of a stretch, as they are distinguished by
being not “stream-oriented”. Likewise, "tcp-server" and "unix-server" sockets do not
stream data, but are only used to accept new clients.

When f is a fd, the assumption is that the mode you provide is compatible with how the fd
is open at the POSIX level. So, for example, "rw" is a good mode to use to open the fd of
an inherited bidirectional stream (such as a connected socket, coprocess, or input/output
device); and "r" or "r+" might be appropriate for a direct-access file. In some cases, you
might want to provide a more specific mode, like the abovementioned "tcp-peer" to indicate
that you intend to do operations requiring a connected TCP socket.

For modes "signal", "ignore", and "default", f must be a signal name. See [Signal
streams], page 44.

For mode "real-ms", f must be an ordered pair (2-tuple) of integers [initial, interval]

where initial is the number of milliseconds before the first desired timer expiry and
interval the period after that. See [Timer streams], page 46.

TCP and UDP sockets

For modes "tcp-client", "tcp-server", "udp-client", and "udp-server", the first
argument to open should be (unless a fd) a 2-tuple [h, p] where h identifies an Internet
host by name or by address in IPv4 dotted or IPv6 colon-rich notation, and p is a service
name or a port number given as an integer or string of decimal digits.

For the server modes, h may be "0.0.0.0" to request that connections or datagrams be
accepted on any IPv4 interface, or "::" for any IPv6 interface. It is also possible to let
the system choose which kind of interface to use for the server socket, by letting h be om

or the empty string (""). The wise client would then try both IPv4 and IPv6. A more
accommodating server might listen (or take datagrams) on both "0.0.0.0" and "::".

If the p in [h, p] is zero or om (omitted), the system chooses an available port number
which can be retrieved using port or sockaddr.

For example, given

fd := open ([om, 0], "tcp-server")

the value of sockaddr fd might be something like ["0.0.0.0", 42113] or ["::", 53622].

For mode "tcp-server", the POSIX-level socket option SO_REUSEADDR is set on the listening
socket.

A call to open a TCP client connection can block for an unspecified length of time, as can a
call to an intrinsic that attempts to auto-open one (see [Automatic opening], page 47).

If the first arg to open is the fd of an already connected TCP socket, such as might have
arisen from accept, the mode "tcp-peer" can be used to open a SETL stream over it,
to indicate intent to call things like peer_sockaddr that require a connected TCP socket.
Such a socket is indistinguishable at the programming level from a client socket, so mode
"tcp-client" would work just as well but be misleading in the case of an accepted client.
The designation "tcp-peer" is also a good fit to the case where you don’t care which role

The Library 43

(client or server) the socket plays. (If you don’t even care that it’s a socket, the more generic
mode "rw" might serve better still.)

The only I/O (data-transferring) operations allowed on UDP client sockets are send and recv,
and the only ones allowed on UDP server sockets are sendto and recvfrom. Conversely,
recv can only be used on UDP client sockets (not on Unix-domain datagram client sockets,
which have no names and thus cannot be sent to). But send can be used on either kind of
datagram client socket, and recvfrom and sendto can be used on either kind of datagram
server socket.

For legacy support, the canonical [h, p] tuple for identifying a host and port may be given
as a string of the form "h:p".

Failure of open for a network socket mode gives om instead of a fd, and sets last_error in
accordance with the failing POSIX socket(), connect(), bind() or listen() call. A fd
passed to open that is not open at the POSIX level sets last_error to a locale-dependent
version of “Bad file descriptor”.

See also peer_address, peer_name, and peer_port.

Unix-domain sockets

For modes "unix-client", "unix-server", "unix-datagram-client", and
"unix-datagram-server", the first arg to open must be (unless a fd) a pathname f for the
socket. A Unix-domain (local) socket is created by POSIX socket(), and its file descriptor
is returned by open if one of these cases also succeeds:

bullet For a client mode, POSIX connect() connects the socket to the server at f. No actual
connection is made in the case of "unix-datagram-client", but a later send will use
the remembered pathname.

bullet For a server mode, any existing pathname f is removed by POSIX unlink(), and then
created and bound to the socket by POSIX bind(). The unlink() is meant to improve
the chances of success of the bind(), but the sequence of calls is not performed as an
atomic unit. The pathname has all permissions enabled, minus those turned off by
the current file mode creation mask (see umask). For mode "unix-server", POSIX
listen() is then called.

Errors in any of the above POSIX calls cause open to return om and set last_error. The
expected ENOENT from unlink() does not count as an error.

If the first arg to open is the fd of an already connected Unix-domain stream socket, such as
might have arisen from accept, the mode "unix-peer" can be used to open a SETL stream
over it, for symmetry with "tcp-peer" mode.

Upon close of a server socket, the pathname is again removed. Errors from unlink() are
ignored in this case, as the pathname may legitimately have been removed already.

File descriptors may be passed on non-datagram Unix-domain sockets using send_fd and
recv_fd.

Unix-domain sockets do not support network-oriented queries such as sockaddr and
peer_name. Unix-domain datagram client sockets do not support recv, as they are anony-
mous and thus cannot be sent to.

In other respects, Unix-domain sockets act much like their network counterparts (see [TCP
and UDP sockets], page 42):

The Library 44

Unix-domain network
"unix-client" "tcp-client"

"unix-server" "tcp-server"

"unix-peer" "tcp-peer"

"unix-datagram-client" "udp-client"

"unix-datagram-server" "udp-server"

They do have some particular advantages over network sockets though, such as the absence
of lingering connection state when the server closes first, and the immediate broken pipe
error seen by the sender on a write when the receiver has done a shut_rd.

Connected subprocesses

For a "pipe-from" stream, the standard output of the child process is connected to the
(readable) fd returned by open in the parent process.

For a "pipe-to" stream, the child’s standard input is connected to the parent’s (writable)
fd.

For a "pump" stream, the standard input and output of the child process are both connected
to the parent’s (bidirectional) fd.

The connection between parent and child in all three of these cases is a Unix-domain
socketpair, and therefore supports send_fd and recv_fd.

A "tty-pump" stream resembles a "pump" stream, but the child’s standard input and output
are instead connected to the slave side of a pseudo-terminal (pty) in raw mode, while the
open caller gets the fd of the master. The child’s terminal-like environment lets the parent
direct a program intended for interactive use. Also, since POSIX programs usually line buffer
their standard output instead of block buffering it when stdout appears to be connected to
a terminal, the "tty-pump" mode lets you use an off-the-shelf program such as sed or awk
as a coprocess in line-by-line message exchange fashion, without response lines getting stuck
in the child’s output buffer and never being seen by the parent.

A string first argument f to open gives a command to be run by the standard shell, as if by
exec ("/bin/sh", ["sh", "-c", f]). The command is run in a subprocess created as if
by pipe_from_child, pipe_to_child, pump, or tty_pump.

For all these subprocess streams, the second argument to the close that balances the open
is significant. The default of close_await is usually appropriate, and sets status to the
child’s exit status. Unclosed pipe/pump streams are closed automatically upon program
termination, but not using close_await.

The signal dispositions in the child are as for a fork, followed in the above open modes by
an exec.

See also pid, kill, filter, system, flush, shutdown, and socketpair.

Signal streams

When the how argument to open is "signal", "ignore", or "default", the f argument
may be one of the following case-insensitive signal names, with or without the "SIG" prefix:

signal name default action usual meaning
"SIGHUP" terminate process modem hangup, or reread config file
"SIGINT" terminate process interrupt from keyboard (e.g., ctrl-C)

The Library 45

"SIGQUIT" terminate; dump core quit from keyboard (e.g., ctrl-\)
"SIGUSR1" terminate process user-defined signal 1
"SIGUSR2" terminate process user-defined signal 2
"SIGPIPE" terminate process write to pipe or socket with no readers
"SIGALRM" terminate process timer expiry
"SIGTERM" terminate process software termination request
"SIGCHLD" ignore child status change
"SIGCONT" ignore continue after stoppage
"SIGTSTP" stop process terminal stop signal
"SIGTTIN" stop process background process attempting read
"SIGTTOU" stop process background process attempting write
"SIGXCPU" terminate; dump core soft CPU limit exceeded
"SIGXFSZ" terminate; dump core soft filesize limit exceeded
"SIGPWR" ignore low battery, or power failure imminent
"SIGWINCH" ignore terminal window size change

The default actions shown here are the POSIX defaults, corresponding to a disposition of
SIG_DFL at the POSIX sigaction() level. The actual disposition for most may be inherited
by the SETL program as if by SIG_IGN (ignore the signal).

SIGPWR and SIGWINCH are not specified by POSIX, but are widely available.

There are many signals that can be sent by kill but cannot be caught or ignored, such as
SIGKILL.

The file descriptor returned by open for any of these stream types is a pseudo-fd, meaning a
small integer like a POSIX fd but phony in that it lies outside the normal fd range (which is
limited by the host operating system; see your shell’s ulimit or limit command for the
maximum number of open files, which is one more than the highest possible system-level fd.

The pecking order for signal handling is as follows:

• Whenever a signal is caught because there is at least one "signal" stream open on
that signal name, an empty line is delivered to every such stream.

Applications are encouraged to anticipate information content in extensions of the
"signal" stream type by reading an arbitrary line, e.g. by using getline or geta, or
reada with only the stream arg.

• Otherwise (no "signal" streams open for the given signal name), when a signal is
received and there is at least one stream of mode "ignore" open on that signal name,
the signal is ignored as if by SIG_IGN at the POSIX sigaction() level.

• Otherwise (neither of the above), when a signal is received and there is at least one
stream of mode "default" open on that signal name, the signal is defaulted as if by
POSIX SIG_DFL to the default action in the above table.

• Otherwise, with no streams open on a given signal name, the signal disposition is given
by the program environment, which is typically (but not necessarily) the default listed
in the above table.

Note that "ignore" and "default" streams are created only for their effects on signal
dispositions. The only thing you can do with one is close it, which may cause its disposition
to revert according to the above pecking order (catch, ignore, default, inherit).

The Library 46

To allow the SETL implementation to use SIGCHLD in support of close_autoreap, opening
SIGCHLD in "ignore" or "default" mode does not respectively prevent or enable zombies
as a POSIX-level SIG_IGN or SIG_DFL disposition would.

A "signal" stream opened on SIGCHLD gets a line each time a child process terminates,
stops (suspends), or continues (resumes). This type of signal does not necessarily queue,
and applications may do well to loop over some non-blocking waitpid and status checks
each time a line is received from a SIGCHLD stream.

To allow the SETL implementation to use SIGALRM in support of the "real-ms" mode
(see [Timer streams], page 46), SIGALRM cannot be opened as a "signal" stream, despite
its appearance in the above table. It can, however, be opened in "ignore" or "default"
mode, in order to control the initial disposition of SIGALRM in child processes, as all timer
streams are closed initially in the child, letting the POSIX-level SIG_IGN or SIG_DFL take
effect according to the rules given above. If no SIGALRM stream is open, its disposition in
the child is what the parent began with.

Signal streams can be used with select.

Timer streams

For mode "real-ms", the first arg to open should be a pair of integers [initial, interval]

giving the number of milliseconds before the first timer expiry and between subsequent
expiries.

The degenerate form [interval], meaning [interval, interval], may also be used, and
for back-compatibility, the latter may be given as a decimal string rather than a tuple.

As with a signal stream, the fd returned by open is a pseudo-fd.

All timer streams are initially closed in a child process, which allows its initial SIGALRM
disposition to be controlled by the parent (see [Signal streams], page 44).

Timer streams can be used with select.

Predefined streams

There are three predefined streams with the following case-insensitive aliases:

name fd aliases meaning
stdin 0 "", "-", "stdin", "input" standard input
stdout 1 "", "-", "stdout", "output" standard output
stderr 2 "stderr", "error" standard error

Files whose actual names are input, ERROR, etc. may still be referred to by explicitly opening
them before starting I/O on them. This will cause such names not to act as standard aliases
again until they are closed as streams.

The empty string ("") acts as stdin or stdout depending on the direction of the stream
operation. Likewise for the hyphen ("-").

You can close stdin, stdout, or stderr at any time, and by the rules of POSIX, the
next open will choose the lowest fd, providing a mechanism by which you can implement
redirection à la shell. See also dup2.

The Library 47

Automatic opening (and closing) of streams

The intrinsics geta, getb, getc, getfile, getline, getn, peekc, and reada attempt to
open a stream f automatically if it is not already open at the SETL level. This also applies
when f is a member of the readable set passed to select.

If f is a tuple of up to 2 elements, these intrinsics try to open a bidirectional TCP client
connection or a (read-only) interval timer, depending on the type of f(1): an integer
indicates a timer (see [Timer streams], page 46).

If f is a string or integer, they try to open it in sequential reading ("r") mode.

Similarly, nprinta, printa, puta, putb, putc, putfile, putline, and writea (and select

when f appears in the writable set) attempt to auto-open f as a bidirectional TCP client
socket if it is a 2-tuple, or as a sequential output stream otherwise ("w" mode).

The accept intrinsic attempts to auto-open a TCP server socket for any argument that
would satisfy open in "tcp-server" mode.

The intrinsics gets, puts, rewind, and seek attempt to auto-open a stream in "r+" mode
(read/write direct access to an existing file) for any string or plausible fd first argument.

The intrinsics send and recv attempt to auto-open a UDP client socket if f is not already
a stream, and sendto and recvfrom try to auto-open a UDP server socket. This applies
when f is a tuple, string, or integer.

Failure of auto-open is considered erroneous except in the case of getfile, which sets
last_error and returns om.

When the eof indicators are being set, a stream that has been auto-opened will be auto-closed
as if by close (which may cause last_error to be set), except that a stream auto-opened
in "r+" mode is never auto-closed.

The only output intrinsic that auto-closes a stream is putfile, and only on an auto-opening
call.

No intrinsic ever attempts to open a stream in mode "n", "a", "w+", "n+", "a+",
"rw", "pipe-from", "pipe-to", "pump", "tty-pump", "unix-client", "unix-server",
"unix-datagram-client", "unix-datagram-server", "signal", "ignore", or
"default".

Buffering

An important difference between file descriptors that are open at the SETL level and the
POSIX file descriptors that underlie them at the system level is that at the SETL level, a fd
returned by open implicitly has an attached buffer structure for SETL-level I/O state.

This is also true for a fd returned by accept, mkstemp, pipe_from_child, pipe_to_child,
pump, or tty_pump, but not for any fd returned by the low-level intrinsics dup, dup2,
socketpair, pipe, or recv_fd.

Thus the POSIX fd, a small non-negative integer, serves as a handle for the SETL stream.
Contrast this with C, where buffered I/O is usually done by the stdio layer using a separate
FILE object that contains the fd and the buffer structure.

Data written by intrinsics such as putc accumulates in the stream’s output buffer until the
stream is flushed by writing the data out using POSIX write() or equivalent. Flushing

The Library 48

is done automatically according to the buffering policy associated with the stream, and
whenever flush is called:

• In the block buffering policy, the output buffer is flushed whenever it becomes full. The
implementation-defined capacity of the output buffer is typically on the order of a few
thousand bytes.

• The line buffering policy is the same as block except that if a newline character (\n) is
written by the SETL program, the buffer is flushed even if it is not yet full.

• In the byte buffering policy, characters are written out at the system level as soon as
they are written by the SETL program.

The buffering policy is set when the stream is created. Most streams are block buffered,
but if a sequential data stream is opened on what appears to be a tty-like device according
to POSIX isatty(), it is line buffered, except in the case of stderr (fd 2), which is byte
buffered by default (though see Section “SETL_LINEBUF_STDERR” in the GNU SETL User
Guide).

One implication of output buffering is that most programs that exchange messages with
other programs should always flush output before attempting input, so that messages are
fully sent before replies are awaited.

The SETL I/O system takes care of most such flushing automatically. In particular, a
bidirectional stream (such as for a connected socket or pump or direct-access file) is implicitly
flushed whenever input is initiated on that stream.

More generally, automatic flushing of the output buffer occurs on a data stream f, and on
the stream if any that is linked to f by tie, when any of these occur:

• SETL input (except via gets) is attempted on f;

• a select call includes f in the readable set;

• recv_fd is called on f.

Thus the call tie (stdin, stdout) can be used to ensure that stdout is auto-flushed
before any attempt is made by the program to read from stdin or await its readability in a
select-based event loop.

Auto-flushing of f (but not of any tie) is done on calls to:

• seek, rewind, gets, or puts;

• close, or shutdown with a second arg of shut_wr or shut_rdwr;

• send_fd;

• ftrunc when f is a stream arg (rather than a pathname that is not open).

Also, whenever fork is called (at least effectively, as for example in an intrinsic like pump

which is described as creating a child process “as if by fork”), all streams are flushed
automatically before the spawning attempt.

Furthermore, when the program is finalizing in preparation for exit, all streams are flushed
and then all closed.

Although an explicit flush call sets last_error in the event of a POSIX write() error,
auto-flushing never does, with the sole exception of putfile in the auto-open/auto-close
case (see [Automatic opening], page 47), which acts as if flush were called explicitly.

The Library 49

Input buffering is largely invisible at the SETL level. The SETL implementation is expected
to request up to some number of bytes from the system (again, typically on the order of
a few thousand bytes) whenever input is requested by the SETL program in the presence
of an empty input buffer. That system call, typically POSIX read() or equivalent, after
waiting as long as necessary for at least one byte or an end of file, receives some bytes into
the buffer or indicates an end-of-file or error condition.

Although input buffering is mostly just silently efficient, there are places where it can be
noticed. One such case is ungetc, as the SETL implementation is only required to support
at least one character of pushback after a getc. It may allow more.

More significantly, input is drained (discarded) upon initiation of any of these operations on
f:

• SETL output;

• a seeking operation (seek, rewind, gets, puts);

• ftrunc when f is a stream (rather than a pathname that is not open).

The draining of input on every output attempt on f, along with the automatic flushing
of output on every input attempt, is ideal for the common case of a bidirectional stream
used in a message-and-reply or immediate-handshake regime. But for truly full-duplex cases
where messages in each direction are to be overlapped, the use of subprocesses, each with
its own copy of the fd, is generally the best approach in SETL. The full-duplex operation
is then effectively relegated to the so-called “file description” level (the buffer structure of
the POSIX kernel or equivalent; a file description is shared by a fd and all its duplicates,
whether arising from the likes of POSIX dup() or from process duplication à la fork()).

Buffering can also be bypassed entirely by using the “non-SETL I/O” sys_read and
sys_write intrinsics.

Datagrams, sent by send and sendto, are not buffered. Nor are file descriptors, sent by
send_fd.

Alternative how arguments to open

The following synonyms for the how argument also exist in GNU SETL, the apparent result
of over-building on some back-compatibility union of historical opening mode names.

If the mode names in the left column may be taken as standard, the aliases on the right
should perhaps be deprecated.

Despite the presentation, they are all case-insensitive:

"a" "AB"

"a" "APPEND"

"a" "BINARY-APPEND"

"a" "CODED-APPEND"

"a" "OUTPUT-APPEND"

"a" "PRINT-APPEND"

"a" "TEXT-APPEND"

"a+" "A+B"

"a+" "AB+"

"default" "DEFAULT-SIGNAL"

"default" "SIGNAL-DEFAULT"

The Library 50

"ignore" "IGNORE-SIGNAL"

"ignore" "SIGNAL-IGNORE"

"n" "BINARY-NEW"

"n" "CODED-NEW"

"n" "NB"

"n" "NEW"

"n" "NEW-BINARY"

"n" "NEW-CODED"

"n" "NEW-TEXT"

"n" "NEW-W"

"n" "TEXT-NEW"

"n+" "BINARY-DIRECT-NEW"

"n+" "BINARY-RANDOM-NEW"

"n+" "DIRECT-BINARY-NEW"

"n+" "DIRECT-NEW"

"n+" "N+B"

"n+" "NB+"

"n+" "NEW+"

"n+" "NEW-BINARY-DIRECT"

"n+" "NEW-BINARY-RANDOM"

"n+" "NEW-DIRECT"

"n+" "NEW-DIRECT-BINARY"

"n+" "NEW-R+"

"n+" "NEW-RANDOM"

"n+" "NEW-RANDOM-BINARY"

"n+" "NEW-W+"

"n+" "RANDOM-BINARY-NEW"

"n+" "RANDOM-NEW"

"pipe-from" "PIPE-IN"

"pipe-to" "PIPE-OUT"

"r" "BINARY"

"r" "BINARY-IN"

"r" "CODED"

"r" "CODED-IN"

"r" "INPUT"

"r" "RB"

"r" "TEXT"

"r" "TEXT-IN"

"r+" "BINARY-DIRECT"

"r+" "BINARY-RANDOM"

"r+" "DIRECT"

"r+" "DIRECT-BINARY"

"r+" "R+B"

"r+" "RANDOM"

"r+" "RANDOM-BINARY"

"r+" "RB+"

"rw" "BIDIRECTIONAL"

The Library 51

"rw" "INPUT-OUTPUT"

"rw" "READ-WRITE"

"rw" "TWO-WAY"

"rw" "TWOWAY"

"signal" "SIGNAL-IN"

"tcp-client" "TCP-CLIENT-SOCKET"

"tcp-client" "CLIENT-SOCKET"

"tcp-client" "SOCKET"

"tcp-server" "TCP-SERVER-SOCKET"

"tcp-server" "SERVER-SOCKET"

"tty-pump" "LINE-PUMP"

"udp-client" "UDP-CLIENT-SOCKET"

"udp-server" "UDP-SERVER-SOCKET"

"unix-client" "UNIX-STREAM-CLIENT"

"unix-client" "UNIX-CLIENT-SOCKET"

"unix-server" "UNIX-STREAM-SERVER"

"unix-server" "UNIX-SERVER-SOCKET"

"w" "BINARY-OUT"

"w" "CODED-OUT"

"w" "OUTPUT"

"w" "PRINT"

"w" "TEXT-OUT"

"w" "WB"

"w+" "W+B"

"w+" "WB+"

or - logical disjunction

op or (boolean, boolean) : boolean

The expression

x or y

is equivalent to the expression

if x then true else y end

which is to say that the or operator is short-circuited like and and the query operator (?),
making it similarly suitable for use as a guard.

Contrast the bitwise operators such as bit_or.

The or operator has a very low precedence, above impl but below and. See [Operator
Precedence], page 84.

peekc - peek at next character in stream

op peekc (stream f) : string

The next available character, if any, in the stream f is returned as a string of length 1, as
if by getc. However, the character also remains in the input as if it were pushed back by
ungetc. In all other respects, including auto-opening, the flushing of any output associations
f may have, the setting of eof and last_error, and auto-closing, peekc behaves like getc.

The Library 52

See also peekchar, ungetc, and ungetchar.

peekchar - peek at next character in stdin

proc peekchar : string

Equivalent to peekc (stdin).

peer_address - peer host address

proc peer_address (stream f) : string

If the stream f is a connected TCP or UDP socket, peer_address returns the Internet
address of the peer in either IPv4 dotted or IPv6 colon-delimited notation. It is permissible
for f to be a file descriptor that is open only at the POSIX level.

Note that for a UDP client socket, there is no actual connection, just a record made of the
peer address when it was opened.

On failure of the underlying POSIX getpeername() to find a peer for f in address family
AF_INET or AF_INET6, peer_address sets last_error and returns om.

See also open, filename, peer_name, peer_port, peer_sockaddr, ip_addresses,
ip_names, and hostaddr.

peer_name - peer host name

proc peer_name (stream f) : string

If the stream f is a connected TCP or UDP socket, peer_name returns an Internet host
name for the peer. It is permissible for f to be a file descriptor that is open only at the
POSIX level.

If the underlying POSIX getpeername() fails to find a peer address for f in address family
AF_INET or AF_INET6, or if a corresponding name cannot be found by POSIX getnameinfo(),
peer_name sets last_error and returns om.

See also open, filename, peer_address, peer_port, peer_sockaddr, ip_names, and
hostname.

peer_port - peer port number

proc peer_port (stream f) : integer

If the stream f is a connected TCP or UDP socket, peer_port returns the port number of
the peer. It is permissible for f to be a file descriptor that is open only at the POSIX level.

On failure of the underlying POSIX getpeername() to find a peer for f in address family
AF_INET or AF_INET6, peer_port sets last_error and returns om.

See also open, filename, port, peer_address, peer_name, and peer_sockaddr.

peer_sockaddr - peer address and port number

proc peer_sockaddr (stream f) : [string, integer]

If the stream f is a connected TCP or UDP socket, peer_sockaddr returns a 2-tuple
[peer_address f, peer_port f]. It is permissible for f to be a file descriptor that is open
only at the POSIX level.

The Library 53

On failure of the underlying POSIX getpeername() to find a peer for f in address family
AF_INET or AF_INET6, peer_sockaddr sets last_error and returns om.

See also accept, open, filename, sockaddr, peer_name, ip_addresses, and ip_names.

pexists - test for existence of processes

op pexists (integer p) : boolean

Tests whether the process or set of processes identified by pid p exists, according to the
same rules as for the p argument to kill. Unlike kill, however, pexists does not set
last_error.

If p exists, pexists p may return true even if the caller has no permission to send a signal to
p. Permission can be checked by calling kill with a signal number of 0 and then examining
last_error.

Both of those operations give but a transient snapshot of system state.

See also pid and getpid.

The precedence of pexists is quite low, like that of other unary predicates (see [Operator
Precedence], page 84).

pid - process ID of connected child

proc pid (stream) : integer

If the argument is a pipe, pump, or tty-pump stream connected to a child process, pid
returns the child’s POSIX process ID. No other stream types are allowed.

If the stream is of an acceptable type but came from an open call over a fd rather than from
a child-creating call, -1 is returned.

See also getpid, getppid, getpgrp, pipe_from_child, pipe_to_child, pump, tty_pump,
pexists, kill, and the open modes "pipe-from", "pipe-to", "pump", and "tty-pump".

pipe - create primitive pipe

proc pipe : [integer, integer]

This is a synonym for socketpair, except that the first fd of the returned pair may only be
open for reading, and the second only for writing, as in POSIX pipe().

pipe_from_child - pipe from child process

proc pipe_from_child : integer

The pipe_from_child intrinsic is a unidirectional form of pump.

It creates a child process, and returns to the calling process a readable stream connected to
the standard output of that child. In the child process, pipe_from_child returns -1.

See also close, filter, system, pid, pipe_to_child, and the open mode "pipe-from".

The Library 54

pipe_to_child - pipe to child process

proc pipe_to_child : integer

The pipe_to_child intrinsic is a unidirectional form of pump.

It creates a child process, and returns to the calling process a writable stream connected to
the standard input of that child. In the child process, pipe_to_child returns -1.

See also close, filter, system, pid, pipe_from_child and the open mode "pipe-to".

port - Internet port number

op port (stream f) : integer

Local (“this side”) port number of the TCP or UDP stream f. It is permissible for f to be
a file descriptor that is open only at the POSIX level.

On failure of the underlying POSIX getsockname() to find an address for f in family
AF_INET or AF_INET6, port sets last_error and returns om.

See also open, filename, sockaddr, peer_port, and peer_sockaddr.

pow - power set

op pow (set s) : set

Returns the set of all 2 ** #s subsets of s, including the empty set {} and s itself.

See also npow.

pretty - printable ASCII rendering of string

op pretty (var) : string

If the operand is not already a string, the pretty operator first converts it to one as if by
str. It then returns a copy of that string in which the 95 characters that ASCII considers
printable are left unchanged, except for the apostrophe (single quote, ’), which becomes
two apostrophes in a row, and the backslash (\), which becomes two backslashes in a row.
An apostrophe is also added at each end. Among the non-printable characters, the audible
alarm, backspace, formfeed, newline, return, horizontal tab, and vertical tab are converted
to \a, \b, \f, \n, \r, \t, and \v respectively (these are the same as the C conventions), and
all remaining characters are converted to \ooo form (backslash followd by 3 octal digits).
For example,

print (pretty +/[char i : i in [0..255]]);

exhibits this printable encoding for all the characters in ASCII. It really is not all that
pretty, but at least it won’t do horrid things to your terminal.

See also unpretty and unstr.

print - print to stdout

proc print (var args(*))

Equivalent to printa (stdout, args(*)).

See also nprint and write.

The Library 55

printa - print to stream

proc printa (stream f, var args(*))

The 0 or more args are written in sequence to the stream f, separated by single spaces.
String arguments are written directly; all others are converted as if by str first. A newline
character (\n) then follows.

If f is not already open, an attempt is made to auto-open it. See [Automatic opening],
page 47.

On output error, output may be incomplete and last_error may be set.

See also print and nprinta (which omits the trailing newline), and writea.

pump - bidirectional stream to child process

proc pump : integer

The pump intrinsic creates a child process as if by fork, and returns in the parent a
bidirectional stream that is connected to the child’s standard input and output.

In the child process, pump returns -1, an unfortunate convention motivated by wanting an
integer outside the range of all possible file descriptors.

Failure to create the child or the bidirectional stream, generally indicating resource exhaustion,
is considered erroneous. (You need to call fork directly in order to detect and recover from
spawning failure.)

The child in this kind of arrangement is sometimes called a coprocess. See [Connected
subprocesses], page 44.

The call tie (stdin, stdout) can be useful in the child in the case of a straightforward
message-and-response application-level protocol over the stream. See [Buffering], page 47.

The bidirectional channel between parent and child is opened over Unix-domain sockets
created as if by socketpair, and therefore supports the passing of file descriptors using
send_fd and recv_fd.

See also open (particularly the "pump", "tty-pump", "pipe-from", and "pipe-to" modes),
tty_pump, pipe_from_child, pipe_to_child, pid, filter, system, flush, close, and
shutdown.

put - write lines to stdout

proc put (string args(*))

Equivalent to puta (stdout, args(*)).

This signature for put follows that of SETL2, while puta is patterned after the old CIMS
SETL put. This makes the signatures of put and puta consistent with those of print and
printa.

puta - write lines to stream

proc puta (stream f, string args(*))

The 0 or more args are written in sequence to the stream f, with a newline character (\n)
after each string.

The Library 56

If f is not already open, an attempt is made to auto-open it. See [Automatic opening],
page 47.

On output error, output may be incomplete and last_error may be set.

A synonym for puta is putline.

See also printa.

putb - write values to stream

proc putb (stream f, var args(*))

The 0 or more args are written in sequence to the stream f, separated by single spaces and
followed by a newline character (\n). All of them are converted as if by str first, with no
exception for strings (contrast printa).

Values written by putb, except for atoms (see newat) and procedure references (see routine),
can be read by getb.

If f is not already open, an attempt is made to auto-open it. See [Automatic opening],
page 47.

On output error, output may be incomplete and last_error may be set.

A synonym for putb is writea.

See also puta.

putc - write characters to stream

proc putc (stream f, string s)

The 0 or more characters in s are written to the stream f.

If f is not already open, an attempt is made to auto-open it. See [Automatic opening],
page 47.

On output error, output may be incomplete and last_error may be set.

See also putfile.

putchar - write characters to stdout

proc putchar (string s)

The call putchar (s) is the same as putc (stdout, s).

putfile - write characters to stream

proc putfile (stream f, string s)

The 0 or more characters in s are written to the stream f.

If f is not already open, an attempt is made to auto-open it. See [Automatic opening],
page 47.

The putfile intrinsic is almost equivalent to putc, except that if putfile auto-opens f, it
also makes sure all output has been written as if by flush and then auto-closes f.

It is the only output intrinsic that auto-closes, making it a convenient one-stop way of
writing a string to a file or network destination, e.g.:

putfile (’timestamp’, date); -- put date into timestamp file

The Library 57

On error, output may be incomplete and last_error may be set by POSIX write() and/or
POSIX close().

See also getfile.

putline - write lines to stream

proc putline (stream f, string args(*))

The 0 or more args are written in sequence to the stream f, with a newline character (\n)
after each string.

If f is not already open, an attempt is made to auto-open it. See [Automatic opening],
page 47.

On output error, output may be incomplete and last_error may be set.

A synonym for putline is puta.

See also printa.

puts - direct-access write

proc puts (stream f, integer start, string x)

The file under the direct-access (seekable) stream f (open mode "w", "n", "r+", "w+", "n+",
or "a+") is treated as a string, where start specifies the index (1 or higher) of the first
character to write. In "a+" mode, start is ignored, and the writing will be at the end of
the file.

The puts intrinsic writes n characters, increasing the size of the file as necessary. Writing
to a position beyond the current end of the file is allowed, and the gap is filled with NUL
characters (\0), possibly in a way that is optimized by the underlying file system. Again,
this does not apply to "a+" mode, where start is ignored.

If f is not already open, an attempt is made to auto-open it in "r+" mode, which allows
seeking, reading, and writing. See [Automatic opening], page 47.

As with seek, f is flushed of output (ignoring errors), and drained of input, before the
repositioning of the file. See [Buffering], page 47.

On output error, output may be incomplete and last_error may be set.

See also gets, putc, putfile, and mkstemp.

random - pseudo-random numbers and selections

op random (integer i) : integer

op random (real r) : real

op random (string s) : string

op random (set t) : var

op random (tuple t) : var

For an integer i >= 0, random i returns a uniformly distributed pseudo-random integer in
the range 0 through i. For i <= 0, the return value is in the range i through 0.

The closed interval range in the integer case is a regrettable SETL idiosyncrasy: random i

can return any one of i+1 values, including i itself. It is perhaps best buried in a wrapper
with a more conventional convention:

The Library 58

-- Uniformly chosen random number in [0..i-1]

op my_random (i);

return random (i-1);

end op;

For a positive real (floating-point) r, random r returns a real in the half-open interval [0,r),
and for negative r, in (r,0]. Paradoxically, random 0.0 is 0.0.

For a string s, random s returns a pseudo-randomly chosen character from s, or om if s is
the empty string ("").

For a set or tuple t, random t returns a pseudo-randomly chosen element from t, or om if
#t = 0.

There is a theoretical possibility that random applied to real r sets last_error to something
like "Numerical result out of range", but most extremely small values of r will map to
0.0 or -0.0 depending on r’s sign, and most extremely large values to positive or negative
floating-point infinity, without setting last_error. In a 64-bit IEEE 754 implementation, a
magnitude of r between 1e-288 and 1e+288 will keep clear of these extremes.

See also setrandom, which sets the random seed.

range - range of map

op range (set) : set

The operand must be a set of ordered pairs, that is, a set of 2-tuples in which no element is
om. The result is the set of all second members of those pairs.

See also domain.

rany - extract trailing character using character set

proc rany (rw string s, string p) : string

If the last character of s occurs anywhere in p (treating p as a set of characters), that last
character is removed from s and returned. Otherwise, nothing happens to s, and the empty
string ("") is returned.

See also the other SNOBOL-inspired intrinsics, namely any, break, len, match, notany,
span, rbreak, rlen, rmatch, rnotany, and rspan.

rbreak - extract trailing substring using character set

proc rbreak (rw string s, string p) : string

Starting from the right, if s contains a character that appears in p (treating p as a set of
characters), the substring of s after that character is removed from the tail of s and returned.
If no character from p appears in s, the return value is the initial value of s, and s is reduced
to the empty string ("").

See also the other SNOBOL-inspired intrinsics, namely any, break, len, match, notany,
span, rany, rlen, rmatch, rnotany, and rspan.

The Library 59

rlen - extract trailing substring by length

proc rlen (rw string s, integer n) : string

A substring of length n min #s is removed from the tail of s and returned. It is an error for
n to be less than 0.

See also the other SNOBOL-inspired intrinsics, namely any, break, len, match, notany,
span, rany, rbreak, rmatch, rnotany, and rspan.

rmatch - extract trailing substring by exact match

proc rmatch (rw string s, string p) : string

If p is equal to the rightmost substring of s, it is removed from s and returned. Otherwise,
nothing happens to s and the empty string ("") is returned.

See also the other SNOBOL-inspired intrinsics, namely any, break, len, match, notany,
span, rany, rbreak, rlen, rnotany, and rspan.

rnotany - extract trailing character using character set

proc rnotany (rw string s, string p) : string

If the last character of s does not occur in p (treating p as a set of characters), that last
character is removed from s and returned. Otherwise, nothing happens to s, and the empty
string ("") is returned.

See also the other SNOBOL-inspired intrinsics, namely any, break, len, match, notany,
span, rany, rbreak, rlen, rmatch, and rspan.

rspan - extract trailing substring using character set

proc rspan (rw string s, string p) : string

The longest trailing substring of s consisting of characters that are in p (treating p as a
set of characters) is removed from s and returned. If there is no such substring, nothing
happens to s, and the empty string ("") is returned.

See also the other SNOBOL-inspired intrinsics, namely any, break, len, match, notany,
span, rany, rbreak, rlen, rmatch, and rnotany.

read - read values from one or more lines of stdin

proc read (wr var args(*))

Equivalent to reada (stdin, args(*)).

reada - read values from one or more lines of stream

proc reada (stream f, wr var args(*))

Zero or more values are read from the stream f and assigned to the succeeding args in
order. If an end of input (end of file or error) is reached before all those arguments have
been assigned to, trailing arguments are set to om. Otherwise, characters through the next
newline (\n)) if any are read and discarded. If the end of input is reached before any
arguments have been assigned to, the eof indicators are set.

The Library 60

If f is not already open, an attempt is made to auto-open it. See [Automatic opening],
page 47.

Values written by writea, except for atoms (see newat) and procedure references (see
routine), are readable by reada. Tokens denoting values are separated by whitespace (ERE
"[\f\n\r\t\v]+") and converted as if by unstr. Since newline is a whitespace character,
input values may be distributed over more than one line.

There is a difference between reada and getb in that after reading the requested number
of values, reada continues reading characters until it either absorbs a newline (\n) or
encounters an end of input, whereas getb stops right after the end of the last value read.
Thus reada (f) is a way of reading a line from f but ignoring its content.

The rules on auto-flushing f’s output associations, on setting last_error, and on auto-
closing are as for getc.

See also read, reads, geta, getline, getfile, getn, printa, val, and unpretty.

readlink - symbolic link referent

op readlink (string f) : string

When f names a file that is a symbolic link (symlink), readlink returns the string associated
with f, i.e., the symlink. The string may or may not name another existing file.

Contrast this with a regular input operation on f, which will fail if f is a symlink to a file
that doesn’t exist.

If f is not a symlink, readlink returns om and sets last_error according to the rules for
POSIX readlink().

See also lexists, fexists, symlink, link, and unlink.

reads - read values from a string

proc reads (stream s, wr var args(*))

Zero or more values are “read” from the string s and assigned to the succeeding args in
order. If the end of the string is reached before all those arguments have been assigned to,
trailing arguments get om. The rules for value recognition and conversion are the same as
for reada and unstr.

See also val.

recv - receive datagram on UDP client socket

op recv (stream f) : string

A datagram is read from the socket f and returned as a string. The stream f must be of
open mode "udp-client"—recv is not supported for "unix-datagram-client" streams,
which can only send.

The select function can be used to wait or check for input of this kind.

If the underlying POSIX recv() fails, recv sets last_error and returns om.

The eof indicators are not set by recv, not even when an empty datagram ("") is received.

If f is not already open at the SETL level, an attempt is made to auto-open it in
"udp-client" mode. See [Automatic opening], page 47.

See also recvfrom, sendto, and sockaddr.

The Library 61

recvfrom - receive datagram on server socket

op recvfrom (stream f) : [[string, integer], string]

op recvfrom (stream f) : [string, string]

A datagram is read from the socket f, and information about its source is returned along
with it.

If f is of open mode "udp-server", the sender’s Internet address and port number are
sensed, and bundled together with the datagram as the return value [[address, portnum],

datagram], where address is a string in IPv4 or IPv6 notation, portnum is an integer, and
datagram is a string.

If f is of mode "unix-datagram-server", the return value is [pathname, datagram], where
pathname is the socket name of the sender if it has one, otherwise the empty string ("").
(Unix-domain clients, mode "unix-datagram-client", do not bind names, so the pathname
is only useful when receiving from other Unix-domain servers.)

The select function can be used to check or wait for input of this kind.

If the underlying POSIX recvfrom() fails, recvfrom sets last_error and returns om.

The eof indicators are not set by recvfrom, not even when an empty datagram ("") is
received.

If f is not already open at the SETL level, an attempt is made to auto-open it in
"udp-server" mode. See [Automatic opening], page 47.

See also sendto, recv, send, and sockaddr.

recv_fd - receive file descriptor

op recv_fd (stream f) : integer

A file descriptor (fd) sent by a process executing a send_fd is returned and left open at
the system level. It is not immediately opened at the SETL level, but can be opened as a
stream by open like any other fd, or auto-opened (see [Automatic opening], page 47).

The stream f should be a Unix-domain socket, such as is created by pipe_from_child,
pipe_to_child, or pump; or by open mode "pipe-from", "pipe-to", "pump",
"unix-client", or "unix-server". Or by socketpair, as f is itself allowed to be a fd not
open at the SETL level.

The select function can be used to test or wait for the presence of a fd ready to be received
on f.

The integer value of the returned fd is chosen by recv_fd as the next available integer, in
the manner of dup, and refers to the same POSIX-level open file description object as the fd
that the other process passed to send_fd does, even though it is numerically independent.

If recv_fd fails to receive a fd, it sets the eof indicators and returns om. An error in the
underlying POSIX recvmsg() call is reflected in last_error.

No attempt to auto-open f is made by recv_fd, but it does follow the getc rules on initial
flushing of output associations and on auto-close upon eof.

The Library 62

rem - integer remainder

op rem (integer n, integer d) : integer

For non-zero d,

n rem d = n - ((n div d) * d)

so, for example:

5 rem 3 = 2

-5 rem 3 = -2

5 rem -3 = 2

-5 rem -3 = -2

In contrast with mod, the sign of the result follows that of the numerator, and its magnitude
depends only on the magnitudes of the operands (not on their signs). Rearrangement of
terms in the above definition of rem allows n to be rather directly reconstructed from its
div and rem given the divisor d.

rename - rename file

proc rename (string old, string new)

Changes the name of a file if possible. On failure of the underlying POSIX rename() call,
last_error is set.

See also link, symlink, unlink, and system.

reverse - reverse string

op reverse (string) : string

Characters in reverse order.

rewind - rewind direct-access stream

proc rewind (stream f)

Equivalent to seek (f, 0).

round - round to nearest integer

op round (real) : integer

op round (integer) : integer

Numbers ending in .5 are rounded away from zero. All others are rounded to the nearest
integer.

For example, round -5.5 = -6, and round -5.4 = -5.

Floating-point infinities and NaN (Not a Number) values give om.

See also floor, ceil, fix, and float.

The Library 63

routine - create procedure reference

op routine (proc_name) : proc_ref

This pseudo-operator produces a value that can subsequently be passed to call in order
to perform an indirect procedure call. The typenames in the signature shown here do not
really exist as SETL keywords, but suggest how this operator is used: you pass it the name
of a procedure in your program, and it returns a handle which you can later pass to call.

For example, it is sometimes convenient to use a mapping to associate strings with procedure
references, as illustrated by the callback style of programming in the example at select.

rpad - pad string on right with blanks

proc rpad (string s, integer n) : string

If n > #s, the returned string is s padded on the right with blanks to length n. Otherwise, s
is returned.

It is an error for n to be less than 0.

See also lpad, which right-justifies by padding on the left.

seek - reposition direct-access stream

proc seek (stream f, integer offset) : integer

proc seek (stream f, integer offset, integer whence) : integer

The file under the direct-access (seekable) stream f (open mode "r", "w", "n", "r+", "w+",
"n+", or "a+") is repositioned so that the next sequential read or write operation will start
at offset bytes relative to the point indicated by whence (except that for "a+", writes are
always at the end of the file). The possibilities for whence are

• seek_set (the default), meaning an absolute offset from the beginning of the file;

• seek_cur, meaning relative to the current read/write position;

• seek_end, meaning from the end of the file.

The offset convention has the beginning of the file at position 0, consistent with the
conventions of POSIX lseek(). (By contrast, the start argument of gets and puts follows
the convention of SETL strings, where the first character has index 1.)

If f is not already open, an attempt is made to auto-open it in "r+" mode, which allows
seeking, reading, and writing. See [Automatic opening], page 47.

The return value is the new read/write position (offset from beginning of file).

Note that seek does not affect eof. Seeking beyond the end of the file and writing is allowed,
as it is for puts, and the gap is filled with NUL characters (\0), possibly in a way that is
optimized by the underlying file system.

The stream f is flushed of output (ignoring output errors) and drained of input, before
any seeking attempt, even one that does not change the current position. See [Buffering],
page 47. Consider using filepos if you just want the current position without the flushing
and draining.

See also rewind and mkstemp.

The Library 64

seek_set, seek_cur, seek_end - constants for use with seek

seek_set : integer

seek_cur : integer

seek_end : integer

See seek.

select - wait for event or timeout

proc select (tuple stream_sets) : tuple

proc select (tuple stream_sets, integer ms) : tuple

Waits for I/O events on sets of streams, with optional timeout (0 to poll).

Because interprocess communication, signals, interval timers, and sockets are all wrapped as
I/O streams in SETL, and SETL is resolutely single-threaded, select is the fundamental
intrinsic for event-driven programming in SETL.

The stream_sets argument gives up to 3 sets of streams:

• stream_sets(1) - streams that may produce input. The meaning of this is actually
extended to include TCP and Unix-domain server sockets that are ready to accept

without blocking, UDP client sockets that have datagrams ready for receipt by recv,
UDP or Unix-domain server sockets ready for a recvfrom, and Unix-domain sockets on
which recv_fd can be called without blocking.

• stream_sets(2) - streams that take output, including UDP and Unix-domain datagram
sockets ready for send or sendto operations, and Unix-domain sockets ready for
send_fd.

• stream_sets(3) - streams that can indicate exceptional conditions. No such conditions
are currently defined in SETL.

An empty stream_sets tuple can be given as [] or om.

The ms argument, if present, specifies how many milliseconds select should wait until a
stream in stream_sets becomes ready. If ms is 0, the streams are tested without waiting.
If ms is absent, select waits indefinitely.

The return value from select is a 3-tuple of stream sets having input, output, and exceptional
readiness respectively. In the case of a timeout, all 3 sets will be empty.

Historically, there could be any number of streams in each of these return sets, and some
of the consequences of that rather direct interface to the underlying POSIX select() or
pselect() are discussed in Section 5.3.8.3, “The Event Loop”, of SETL for Internet Data
Processing (https://cs.nyu.edu/media/publications/bacon_david.pdf), p. 163 ff. In
brief, an unprocessed stream in a ready set can be closed during the processing of an event
associated with another stream, and then reopened in another way before being processed
on that burst of events as if it were the original stream. POSIX promotes fd reuse by picking
the lowest unused number, making such aliasing quite possible unless the application takes
special care to prevent it.

To remove that subtle and unnecessary hazard, select now returns at most one stream. So at
least 2 of the 3 ready sets will be empty, and the other at most a singleton. Implementations
are encouraged to cache results from an underlying POSIX pselect() call, doling a stream
out from the cache in preference to calling pselect(), and removing a stream from the

https://cs.nyu.edu/media/publications/bacon_david.pdf
https://cs.nyu.edu/media/publications/bacon_david.pdf

The Library 65

cache when it is closed. But an implementation could instead skip that optimization and
simply pick one stream from what pselect() gives, ignoring the rest in the faith that they
will still be there on the next pselect() call if they should be.

Streams in the input and output sets in the stream_sets argument to select are subject
to auto-opening (see [Automatic opening], page 47).

Also, appearance in the input set causes auto-flushing of a stream’s output associations in
the manner of getc.

Since a stream_sets argument of om means no streams, the statement

select (om, ms);

is pretty much a standard way to delay program execution for ms milliseconds, and

select (om);

suspends the program until it is killed by external forces.

Mostly, select is used to check and wait for the availability of input, not for the possibility of
output. Even when select tells you a stream is ready to take output, you do not in general
know how much. Moreover, it’s the pipe that is ready, not necessarily the receiver. Such
notifications could conceivably be of use in some high-performance multiplexing application,
but if output blockage is a concern in any given instance, it is usually best to interpose a
child process that can afford to block on its own output, and notifies the parent when it is
ready for more. The parent-child communication goes at local speed.

For a SETL stream, which is buffered, “ready for output” means that a POSIX write() of
some number of bytes will not block. It does not merely mean that there is room in the
SETL buffer, which is always true, but rather that the stream is flushable without blocking
(unless the buffer is too full for what the pipe can currently accommodate). It also means
that sys_write can be called on the stream without blocking, provided the request is not
too big. It is seldom necessary to test for output readiness. For datagram sockets, it is never
even useful.

Using routine, a callback scheme for input events can be realized with select:

• Global map from stream handle to unary callback routine:

var callbacks := {};

• Register callback procedure cb to be called when stream f has input available:

callbacks(f) := routine cb;

• Unregister stream f:

callbacks(f) := om;

• Input event dispatcher loop:

loop -- indefinitely
[ready] := select ([domain callbacks]);

for f in ready loop -- at most 1 iteration nowadays
call (callbacks(f), f); -- f is map key and callback arg

end loop;

end loop;

• A callback cb for input available on stream f:

The Library 66

proc cb (f);

reada (f, cmd); -- read a request from f

-- act on it ...

end cb;

send - send datagram on client socket

proc send (stream f, string datagram)

The string datagram is sent via the client socket f (open mode "udp-client" or
"unix-datagram-client"). Datagram output is not buffered (see [Buffering], page 47).

Failure of the underlying POSIX send() is reflected in last_error.

If f is not already open at the SETL level, an attempt is made to auto-open it in
"udp-client" mode. See [Automatic opening], page 47.

See also sendto, recv, recvfrom, and sockaddr.

sendto - send datagram on server socket

proc sendto (stream f, tuple dest, string datagram)

proc sendto (stream f, string pathname, string datagram)

The datagram is sent via the server socket f to the destination dest or pathname.

If f is of open mode "udp-server", dest must be a 2-tuple [host, port], where host is a
string containing an Internet host name or an address in IPv4 or IPv6 notation, and port is
an integer client port number or string port name.

If host is om or the empty string (""), it is taken to mean a loopback interface such as
"127.0.0.1" or "::1".

If POSIX getaddrinfo() fails on the given dest, or all POSIX sendto() attempts on the
Internet address(es) found for it fail, last_error is set according to the last of those failures.

If f is of open mode "udp-datagram-server", pathname is the Unix-domain socket of
another server. Errors in POSIX sendto() are reflected in last_error.

If f is not already open at the SETL level, an attempt is made to auto-open it in
"udp-server" mode. See [Automatic opening], page 47.

See the open mode "udp-server", and see also recvfrom, send, recv, and select.

send_fd - send file descriptor

proc send_fd (stream f, integer fd)

The stream f is first flushed as if by flush (but without setting last_error), and then
the file descriptor fd (which may or may not be open at the SETL level) is sent via f to a
process that is expected to call recv_fd.

The stream f should be a non-datagram Unix-domain socket, such as is created by
pipe_from_child, pipe_to_child, or pump; or by open mode "pipe-from", "pipe-to",
"pump", "unix-client", or "unix-server". Or by socketpair, as f is itself allowed to be
a fd not open at the SETL level.

The select function can be used to check or wait for f to be ready to take a file descriptor
without blocking. This will never be necessary in practice, though the POSIX sendmsg()

specification makes it theoretically possible that send_fd could block on that call.

The Library 67

The more significant possibility is that send_fd blocks while waiting for the receiver to
acknowledge receipt of the fd. There are POSIX platforms such as QNX where the sender
cannot afford to close the fd before the receiver is known to have received it, or the open
file description may have been destroyed in the meantime. Although this responsibility
could have been left to applications to deal with, the design decision was made to insist that
the SETL implementation take care of it. This imposes a different and perfectly normal
responsibility on applications, namely to ensure that the blocking by send_fd during this
rendezvous, while it awaits confirmation by the peer recv_fd, is kept brief or benign as
appropriate.

If the POSIX sendmsg() underlying send_fd fails, last_error is set.

setctty - acquire controlling terminal

proc setctty (stream f)

The terminal or pseudo-terminal connected to stream f is made (in POSIX terms) the
controlling terminal of the calling process if it is a session leader (see setsid) and does not
already have a controlling terminal. This is used in job control.

POSIX does not define a standard way of acquiring a controlling terminal, but the BSD
ioctl() TIOCSCTTY is widely supported. For older SystemV-based Unix systems that
do not have this capability but do support the notion of a controlling terminal, the SETL
implementation is expected to fall back to acquiring it when a session leader without one
opens a terminal device (real or virtual). Conversely, if a mechanism like TIOCSCTTY is
supported by the host system, the SETL implementation is expected to use that as the
only way of setting the controlling terminal (specifically, by including the O NOCTTY flag
on all POSIX tty open() and posix_openpt() calls so that the controlling terminal isn’t
automatically assigned).

When the controlling terminal is acquired, the foreground process group (see tcgetpgrp and
tcsetpgrp) is set to be that of the session leader, which becomes the controlling process for
that terminal.

Failure of setctty, such as when the calling process is not a session leader, is reflected
in last_error. If the host system does not have a mechanism like TIOCSCTTY (or like
the tcsetsid() that appears in FreeBSD and QNX), last_error corresponds to a POSIX
errno value of ENOSYS.

See also unsetctty, getpgrp, setpgid, and tty_pump.

setegid - set effective group ID

proc setegid (integer gid)

Calls POSIX setegid() on the group ID gid.

Sets last_error on failure.

See also setgid, getegid, getgid, seteuid, setuid (details and example), geteuid, and
getuid.

The Library 68

setenv - set environment variable

proc setenv (string name, string value)

proc setenv (string name)

The call setenv name, value gives the environment variable name the value value. Omitting
value is equivalent to passing the empty string ("").

Note that setenv is an interface to the POSIX setenv(), and uses some system memory,
so should be used sparingly.

See also getenv and unsetenv.

seteuid - set effective user ID

proc seteuid (integer uid)

Calls POSIX seteuid() on the user ID uid.

Sets last_error on failure.

See also setuid (details and example), geteuid, getuid, setegid, setgid, getegid, and
getgid.

setgid - set group ID

proc setgid (integer gid)

Calls POSIX setgid() on the group ID gid.

Sets last_error on failure.

See also setegid, getgid, getegid, setuid (details and example), seteuid, getuid, and
geteuid.

setpgid - set process group ID

proc setpgid (integer p, integer pg)

Sets the process group ID of the process with process ID p to pg, using POSIX setpgid().
If p and pg match, a new process group is created within the session. Otherwise, pg must
identify an existing process group within the session. The pid p must be that of the caller
or of a direct child that has not yet called exec.

The process group ID of a session leader (see setsid) cannot be changed.

If p is 0, getpid is substituted. If pg is 0, it is taken to be p (after substitution).

On failure, last_error is set.

The main intended role of this intrinsic is in job control. When a new process is spawned, it
needs to be put into the right process group. In order to ensure that this happens before
either the parent starts sending signals intended for the process group or the child does an
exec, both the parent and the child should call setpgid on the child’s pid, putting it in the
desired (new or existing) process group right after the spawning, so that it does not matter
which attempt succeeds first.

See also getpgrp, setctty, unsetctty, tcgetpgrp, and tcsetpgrp.

The Library 69

setrandom - set random seed

proc setrandom (integer seed)

Establishes a starting point for pseudo-random number generation. If seed is 0, the starting
point is as unpredictable as the SETL implementation can make it with reasonable effort,
given available sources of entropy such as /dev/urandom.

See also random.

setsid - create new session

proc setsid

Sessions are fundamental to job control in POSIX, as each job is a process group, and a
session is a set of process groups.

If the caller is not a process group leader, that is, its process ID is not the process group ID
of any process, setsid establishes a new session: the session ID and process group ID are
set to the process ID of the caller, thus making the caller the new process group leader and
the new session leader. After a successful call to setsid, there is no controlling terminal
(but see setctty).

On failure (such as when the caller is already a process group leader), last_error is set.

See also getsid, getpgrp, setpgid, tcgetpgrp, tcsetpgrp, and unsetctty.

setuid - set user ID

proc setuid (integer uid)

Calls POSIX setuid() on the user ID uid.

A setuid executable file in POSIX is one that has the set-user-ID mode bit set (the POSIX
command ‘chmod u+s file’ sets this bit, ‘chmod u-s file’ clears it, and ‘ls -l file’ dis-
plays whether it is set).

If a user (called the real user) other than the owner of such a file runs it, the effective user
ID and saved user ID are initially defined to be those of the file’s owner, rather than the
real user ID. The program runs with the privileges of the effective user, which in particular
implies that upon starting, the program can manipulate the owner’s files.

But the program has another important privilege too, namely the ability to switch the
effective user ID back and forth between the real and the saved ID, using seteuid. (For a
regular user, setuid is equivalent to seteuid, but for a “superuser”, setuid sets all 3 IDs
and is in that respect like a one-way door.)

For example, suppose you are a DYI professor, and you want your students to be able to
submit homework programs and other files safely. Naturally, your IT department does not
trust you, so you don’t have special privileges. Armed with setuid, however, it is easy to
set up what you want: simply have your submit program, when run by a student, use the
student’s privileges to fetch the student’s files, and your privileges to store them in a private
area of yours.

The situation for group IDs and setgid executables is exactly analogous to that for user IDs.

If setuid fails, last_error is set.

See also getuid, geteuid, setgid, setegid, getgid, and getegid.

The Library 70

set_intslash - muck with integer division semantics

proc set_intslash (boolean) : boolean

A call to set_intslash returns the current value of intslash and sets intslash to the
value given by the boolean argument.

set_magic - regular expression recognition

proc set_magic (boolean) : boolean

A call to set_magic returns the current value of magic and sets it to the value given by the
boolean argument.

shutdown - disable I/O in one or both directions

proc shutdown (stream f, integer how)

If f is a TCP or Unix-domain socket stream, shutdown disables the direction(s) indicated in
the how argument (which may be any one of the predefined constants shut_rd, shut_wr, or
shut_rdwr), using POSIX shutdown().

If how is shut_wr or shut_rdwr, the stream is first flushed as if by flush, but without
reflecting output errors in last_error.

With a shut_wr or shut_rd argument, shutdown performs a half-close. For example,
shut_wr can be used to tell a peer that you have finished sending data (thus making the
peer see an end-of-file condition) but that you would still like to receive a reply on the same
(still half-open) connection.

Unlike close, which does nothing to the communications channel unless the stream’s fd is
the last reference to the underlying file description, shutdown actually closes the direction(s)
of communication that it is asked to.

It is permissible to call shutdown on a file descriptor that is not open at the SETL level but
open at the underlying system level.

Failure of the underlying POSIX shutdown() is reflected in last_error.

See also open and pump.

shut_rd, shut_wr, shut_rdwr - constants for use with
shutdown

shut_rd : integer

shut_wr : integer

shut_rdwr : integer

See shutdown.

sign - sign

op sign (integer x) : integer

op sign (real x) : integer

Returns -1, 0, or 1 according as x < 0, x = 0, or x > 0 respectively.

The Library 71

sin - sine

op sin (real) : real

op sin (integer) : real

The operand is in radians. See also asin.

sinh - hyperbolic sine

op sinh (real) : real

op sinh (integer) : real

Engorged nasal passage.

sockaddr - Internet address and port number

proc sockaddr (stream f): [string, integer]

If stream f is a TCP or UDP socket, sockaddr returns a 2-tuple whose first member is
its local Internet address, in either IPv4 dotted or IPv6 colon hexadecimal notation, and
whose second member is the TCP or UDP port number. It is permissible for f to be a file
descriptor that is open only at the POSIX level. In the case of a listening TCP server socket
or a UDP server socket, the address may indicate any available interface, e.g., "0.0.0.0" or
"::".

On failure of the underlying POSIX getsockname() to find an address for f in family
AF_INET or AF_INET6, sockaddr sets last_error and returns om.

See also open, filename, port, hostaddr, ip_addresses, ip_names, peer_name, and
peer_sockaddr.

socketpair - create bidirectional local channel

proc socketpair : [integer, integer]

This is a low-level interface to POSIX socketpair().

It returns the file descriptors of a pair of connected, unnamed Unix-domain sockets such
that output to each socket is presented as input to the other.

This is chiefly of use when you are (perhaps as a classroom or prototyping exercise) managing
processes at the level of fork, dup2, close, exec, and waitpid. Otherwise, one of the higher-
level intrinsics {filter, system, pipe_from_child, pipe_to_child, pump, tty_pump} or
open modes {"pipe-from", "pipe-to", "pump", "tty-pump"} might cover your needs more
conveniently.

That said, there may be times when you want an extra channel between the program and
a child process, or between offspring; and socketpair creates such a channel before the
spawning. Each process would then keep one fd and close the other, possibly opening a
SETL stream over the kept fd in mode "r", "w", or "rw", either explicitly with open or (for
"r" or "w") implicitly (see [Automatic opening], page 47).

Being a Unix-domain socket, each fd in the pair returned by socketpair supports the
passing of other file descriptors with send_fd and recv_fd.

On failure, socketpair sets last_error and returns om.

See also pipe, which can (but need not be) used for unidirectional use cases.

The Library 72

span - extract leading substring using character set

proc span (rw string s, string p) : string

The longest initial substring of s consisting of characters that are in p (treating p as a set of
characters) is removed from s and returned. If there is no such substring, nothing happens
to s, and the empty string ("") is returned.

See also the other SNOBOL-inspired intrinsics, namely any, break, len, match, notany,
rany, rbreak, rlen, rmatch, rnotany, and rspan.

split - split string into tuple

proc split (string s, pattern p) : [string, ...]

proc split (string s) : [string, ...]

Substrings of s are returned as a tuple, where the extended regular expression (ERE) p is a
delimiter pattern defaulting to whitespace, "[\f\n\r\t\v]+".

The subject string s is considered to be surrounded by strings satisfying the delimiter
pattern p, and split returns the strings between the delimiters. So for example
split (":ab::c", ":") is ["", "ab", "", "c"] while split (":ab::c", ":+") is
["ab", "c"].

The pattern p is subject to the setting of magic, and can be a string or a 2-tuple, as detailed
under mark. When p is omitted, the whitespace ERE is used regardless of the setting of
magic.

Splitting the empty string yields the empty tuple; i.e., split ("", p) = [] for any pattern
p;

See also join and gsub.

sqrt - square root

op sqrt (real) : real

op sqrt (integer) : real

Where squares come from.

status - child process status

status : integer

Status of the child process that was last successfully waited for by filter, system, or
waitpid; or by close as applied to a pipe, pump, or tty-pump stream in close_await

mode (the default).

The initial value of status, when no child status has yet been reaped, is om. It is also set to
om when any of the above calls is unsuccessful, or when waitpid returns 0.

If a successfully waited-for child made a normal exit, e.g. via POSIX exit() or _exit(),
return from C main() program, or SETL stop statement, status is the exit status given
by the exit() or _exit() argument, main() return value, or stop operand, modulo 256.
In POSIX conventions, an exit status of 0 indicates success.

If the child was terminated by signal sig (see kill), status is -128 + sig. This allows the
SETL program to distinguish normal exits from termination by signal, but also dovetails

The Library 73

with shell practice (which uses 128 plus the signal number). For example, given a SIGINT
value of 2, the status of a waited-for subprocess killed by SIGINT is -126 (-128 + 2), which
if used in turn as the operand of a stop statement gives an exit status of 130 when taken
modulo 256, just as for a program the shell terminates with SIGINT, e.g. on a ctrl-C from
the keyboard.

Additionally, if the child is waited for by waitpid (rather than by close, filter, or system),
stopped and continued events are reflected in a status of -32 for a continued (resumed)
child, and -32 + stopsig for a stopped (suspended) child, where stopsig is the number of
the SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU signal that caused the stoppage. These 4
signal numbers lie within the range 17 to 28 on all known POSIX implementations, putting
the corresponding status values in an otherwise unused range of small negative integers.

See also pipe_from_child, pipe_to_child, pump, tty_pump, and the open modes
"pipe-from", "pipe-to", "pump", and "tty-pump".

stdin, stdout, stderr - predefined streams

stdin : integer

stdout : integer

stderr : integer

The constant fd stdin is 0, stdout is 1, and stderr is 2. See [Predefined streams], page 46.

str - string representation of value

op str (var x) : string

The operand x is converted to a string such that (for most types) the result can be converted
back to the same value using unstr.

Some loss of precision is possible in the case of real x, and the decimal point may be omitted
if the fraction in x is 0. These hazards can be offset by the use of fixed or floating in
place of str. Bizarre forms such as "nan" and "-inf" are also possible in extreme cases.

Procedure references (see routine) are converted to "<ROUTINE>", and atoms are converted
to strings of the form "#digits". Those two forms cannot be converted back to values with
unstr.

The value om renders as an asterisk (*).

For a string x that does not have the form of a SETL identifier (alphabetic character
followed by 0 or more alphanumeric or underscore characters), str x is a copy of x except
that each apostrophe (’) is twinned (producing two apostrophes in a row), and an apostrophe
is added at each end. If x does have the form of a SETL identifier, str x = unstr x = x.

For a set x, str x begins with a left brace ({) and ends with a right one (}). Likewise
brackets ([,]) surround a tuple. Sets and tuples nest to arbitrary degree, and the converted
values within them are separated by single spaces.

See also also pretty, unpretty, whole, strad, val, printa, putb, puts, and writea.

strad - radix-prefixed string representation of integer

proc strad (integer x, integer radix) : string

The Library 74

The integer argument x is converted to a string representing its value with an explicit radix.
The radix argument, which must be an integer in the range 2 to 36, gives the base prefix
in the result denotation "radix#digits", where the radix is represented in decimal and
the digits after the sharp sign are drawn from the characters 0 through 9 and lowercase a

through z. The string is prefixed with a hyphen if x is negative. Examples:

strad (10, 10) = "10#10"

strad (10, 16) = "16#a"

strad (10, 2) = "2#1010"

strad (-899, 36) = "-36#oz"

Strings produced by strad can be converted back to integers by val, unstr, and reads.

See also whole, str, fixed, and floating.

sub - replace pattern in string

proc sub (rw string s, pattern p) : string

proc sub (rw string s, pattern p, string r) : string

The leftmost occurrence in s of the pattern p is replaced by r, which defaults to the empty
string (""). The matched substring of s replaced by this operation is returned. If p is not
found, s is left unmodified and om is returned.

The pattern p is subject to the setting of magic, and can be a string or a 2-tuple, as detailed
under mark.

In the replacement pattern r, when magic is true, the ampersand character (&) is special, as
is a backslash (\) followed by a decimal digit. The ampersand refers to the entire matched
substring, and that is also the meaning of a backslash followed by zero (0). Backslash followed
by another digit k refers to the substring matching the kth parenthesized subexpression
in the pattern p. When p is a tuple [p1, p2], parenthesized subexpressions are counted
starting in p1 and continuing in p2.

If magic is set to false, r is taken literally as the string to replace the matched substring,
with no ampersand or backslash interpretation.

Notice that for string p, the expression

sub (s, p, r)

is similar to

s(p) := r

except that the value of the latter is not simply the substring that was replaced as it is in
the sub case, but rather the new value of s(p)—a rematch!

If p is the tuple [p1, p2], the corresponding assignment is:

s(p1..p2) := r

See also gsub and gmark.

subset - subset test

op subset (set ss, set s) : boolean

Returns true if every member of ss is also in s.

Being a predicate, it has quite a low precedence. See [Operator Precedence], page 84.

See also incs.

The Library 75

symlink - create symbolic link

proc symlink (string s, string new)

Creates a symbolic link (soft link) to s under the filename new using POSIX symlink(), if
new does not exist before the call.

For symbolic links, unlike hard links (see link), it does not matter whether s refers to an
existing file in order for the symlink call to succeed. However, if s does exist as a file and
the symlink call does succeed, subsequent attempts to access the contents of the file new

will be redirected to the file s.

If symlink fails, last_error is set.

Given a stable directory structure above new, symlink behaves atomically, and can be used
as a test-and-set mechanism for inter-process synchronization: the lock (mutex) new is
acquired if and when symlink succeeds, and releasing it is done atomically by unlink.

See also readlink, lexists, fexists, and rename.

system - run command in subshell

proc system (string cmd) : integer

The cmd argument specifies a shell command, which is performed as if by
exec ("/bin/sh", ["sh", "-c", cmd]) in a child process spawned as if by fork.

Just as with filter, the signals SIGINT and SIGQUIT are temporarily ignored in the
parent while it waits for the child to complete. Thus a terminal-generated signal (typically
ctrl-C for SIGINT and ctrl-\ for SIGQUIT) that goes to the process group will be seen by
the child but not the parent, which thus remains to handle the child termination.

SIGCHLD is not blocked during the system call, as it would be during a POSIX system()

call. The SETL implementation is expected to do all handling of SIGCHLD, and has to be
free to reap child processes detached via close_autoreap even while it is waiting for the
cmd child to complete. Effectively, this means that it has to be in no danger of competing
with a user-supplied handler that intercepts SIGCHLD. Since that signal, like others, is
reflected up to the SETL program when a "signal" stream over it is open, there is no need
in a SETL implementation, and really no room in the semantics of SETL, for unrestricted
asynchronous signal handlers.

The parent uses POSIX waitpid() to get the exit status of the command, which is placed
in status and returned by system. If waitpid() fails, status is set to om and the reason
for the failure appears in last_error, just as in the similar scenario of close with the
close_await parameter.

See also pipe_from_child, pipe_to_child, pump, tty_pump, socketpair, pipe, dup, dup2,
and waitpid; and the open modes "pipe-from", "pipe-to", "pump", and "tty-pump".

sys_read - low-level read

proc sys_read (integer fd, integer n) : string

This function bypasses SETL buffering and calls POSIX read() directly. The fd may or
may not be open at the SETL level (see [Buffering], page 47).

Up to n bytes are read from the fd and returned as a string.

The Library 76

End of file is not indicated by a change in eof, only by an empty string result ("").

If an error occurs at the POSIX read() level, sys_read sets last_error and returns om.

See also sys_write.

sys_write - low-level write

proc sys_write (integer fd, string s) : integer

This function bypasses SETL buffering and calls POSIX write() directly. The fd may or
may not be open at the SETL level (see [Buffering], page 47).

An attempt is made to write all #s bytes of s. The actual number of bytes written is
returned, unless there is an error at the POSIX write() level, in which case -1 is returned
and last_error gives details.

See also sys_read.

tan - trigonometric tangent

op tan (real) : real

op tan (integer) : real

The operand is in radians. See also atan and atan2.

tanh - hyperbolic tangent

op tanh (real) : real

op tanh (integer) : real

An extreme diversion.

tcgetpgrp - get foreground process group ID

proc tcgetpgrp (stream f) : integer

Uses POSIX tcgetpgrp to get the process group ID of the foreground process group for
which the terminal given by stream f is the caller’s controlling terminal. If there is no
foreground process group, the return value will be greater than 1 and not match the ID of
any existing process group.

On failure, last_error is set and om is returned.

See also tcsetpgrp.

tcsetpgrp - put process group into foreground

proc tcsetpgrp (stream f, integer p)

For use in job control, tcsetpgrp uses POSIX tcsetpgrp to set the foreground process
group ID associated with the controlling terminal (see setctty) given by stream f to p,
which must match the process group ID of a process in the same session as the calling
process. The terminal driver sends keyboard-generated signals (SIGINT and SIGQUIT) to
the foreground process group (job).

If tcsetpgrp is called by a member of a background process group in its session, and the
caller is not blocking or ignoring SIGTTOU, a SIGTTOU signal is sent to the background

The Library 77

process group (as it is for attempted output to the controlling terminal by a background
process when POSIX ‘stty tostop’ is in effect). If SIGTTOU is being blocked or ignored,
the tcsetpgrp operation is allowed. Interactive session leaders use it to assign foreground
status to one job or another.

On failure, tcsetpgrp sets last_error.

See also tcgetpgrp, getpgrp, setpgid, and tty_pump.

tie - auto-flush stream upon input from other stream

proc tie (stream, stream)

After a call to tie, whenever an input operation such as reada or geta is requested on one
of the two given streams, all output buffered for the other is written out as if by flush first
but without setting last_error. Flushing a read-only stream, or a stream with no pending
output, is a no-op.

There are a few other operations besides attempted sequential stream input that trigger the
auto-flushing of a tied stream. See [Buffering], page 47.

A stream can only be tied to one other stream at a time. Previous associations are dissolved
by tie when it forms a new one, and by untie.

time - elapsed CPU time in milliseconds

proc time : integer

This gives the total amount of CPU time used by the current process and all its child
processes that have terminated and been waited for, in milliseconds. This includes both user
time and time spent by the operating system on behalf of the user.

See also clock, tod, close (on streams connected to child processes), filter, system, and
waitpid.

to_lower - convert string to lowercase

op to_lower (string) : string

A string of length equal to that of the operand is returned. Characters other than A-Z are
unaffected.

See also to_upper.

to_upper - convert string to uppercase

op to_upper (string) : string

A string of length equal to that of the operand is returned. Characters other than a-z are
unaffected.

See also to_lower.

The Library 78

tod - calendar time in milliseconds

proc tod : integer

This is the total number of milliseconds that have elapsed in the epoch beginning 1 January
1970 UTC.

See also clock, time, date, and fdate.

true - predefined boolean value

true : boolean

Information is not knowledge.
Knowledge is not wisdom.
Wisdom is not truth.
Truth is not beauty.
Beauty is not love.
Love is not music.
Music is the best.

– Frank Zappa, 1979

See also false.

tty_pump - master end of child stream over pseudo-terminal

This is the same as pump, but instead of a socketpair, the child’s standard input and output
are connected to the slave side of a pseudo-terminal (pty) in raw mode; tty_pump returns
the fd of the master side.

The open mode "tty-pump" is like tty_pump but spawns an external program rather than
a local coprocess.

See [Connected subprocesses], page 44.

type - type of SETL value

op type (var) : string

Returns "ATOM", "BOOLEAN", "INTEGER", "REAL", "SET", "STRING", "TUPLE", "PROC_REF",
or "OM".

See also the is_type type-testing operators, and denotype.

umask - set file mode creation mask

proc umask : integer

proc umask (integer) : integer

This is an interface to POSIX umask(). Both forms of the call return the current value of
the file mode creation mask, and the second form changes it to a new value. For example,

umask (8#022);

arranges that files created by the program and its child processes will not be writable by
other users or groups unless subsequently made so by the POSIX chmod command.

The Library 79

In restricted mode (see [Restricted Mode], page 85), bit_or is applied between the mask
argument and the mask with which the SETL program began. This allows the environment
to prevent a restricted program from creating files with excessive permissions. For example,
starting the restricted program with a umask of octal 137 would make sure files were created
with no execute access by the owner, at most read access by the group, and no access by the
rest of the world.

ungetc - push characters back into stream

proc ungetc (stream f, string s)

The 0 or more characters of s are pushed back into the stream f, so that they will appear
as the next input. The SETL implementation may insist that s match the #s characters
that were most recently read from the stream.

At least one character of pushback is allowed if at least one character has been read since
the input buffer was last empty, such as after it was last drained (see [Buffering], page 47).

A successful ungetc does not clear eof, but the next input attempt on f will begin by doing
so. Pending eof and error indicators remain pending, and any characters pushed back can
be read again before eof and possibly last_error are actually set.

See also ungetchar, peekc, and peekchar.

ungetchar - push characters back into stdin

proc ungetchar (string s)

Equivalent to ungetc (stdin, s).

unhex - convert from hexadecimal

op unhex (string) : string

This is the inverse of hex. It returns om if its string operand does not contain an even
number of (case-insensitively recognized) hexadecimal characters.

unlink - destroy file reference

proc unlink (string f)

Remove the pathname f from the filesystem, using POSIX unlink(). If f is a symbolic
link, the pathname is removed. Otherwise, if f is the last link to the object in the filesystem,
and the last of any file descriptors open on it have closed, the space if any occupied by the
object is freed.

If unlink fails, last_error is set.

See also link, symlink, readlink, fexists, and lexists.

unpretty - convert string from pretty form

op unpretty (string s) : string

The string s should be in pretty form, though the unpretty operator is somewhat liberal in
what it accepts relative to what pretty produces.

The Library 80

However, s must still begin and end with an apostrophe (single quote, ’) or begin and end
with a double quote (").

Inside s, every character must be one of the 95 characters ASCII considers printable, which
includes blank. The unpretty operator makes the following interpretations in transforming
s into an unrestricted string, where backslash (\) is the escape character that introduces a
special sequence:

• Escape followed by any of the 33 non-alphanumeric printable characters, including
backslash, means just that character.

• Escape followed by up to 3 octal digits starting with the digit 0, 1, 2, or 3 means a
character having the bit pattern indicated by the digits, as in C.

• Escape followed by x and then 1 or 2 hexadecimal digits is an alternative to the octal
escape sequence. Thus "\xdB" means the same as "\333" to unpretty.

• Escape followed by these letters means what it does in C:

letter equivalent ASCII meaning
a x07 alert
b x08 backspace
f x0c formfeed
n x0a newline
r x0d carriage return
t x09 horizontal tab
v x0b vertical tab

• Escape followed by anything else is invalid.

Other characters represent themselves, except that if the string begins with an apostrophe,
an internal apostrophe may be indicated by a pair of successive apostrophes instead of \’.
Likewise, if the string begins with a double quote, an internal double quote may be indicated
by a pair of successive double quotes rather than \".

Those are also the rules and interpretations for literal strings in SETL source code.

For any string s, unpretty pretty s = s.

See also unstr and str.

unsetctty - relinquish controlling terminal

proc unsetctty (stream f)

If the terminal or pseudo-terminal connected to stream f is the controlling terminal for the
calling process (see setctty), it is given up, provided that a mechanism at the host system
level such as the BSD-rooted ioctl() TIOCNOTTY is available. On some systems, such
as Linux, this will also cause signals SIGHUP and SIGCONT to be sent to the foreground
process group if the caller is session leader.

Failure of unsetctty is reflected in last_error.

unsetenv - remove environment variable definition

op unsetenv (string name)

If the environment variable name was defined, undefine it. Note that this is not the same as
setting it to the empty string ("").

The Library 81

See also setenv and getenv.

unstr - read value from string

op unstr (string s) : var

The unstr operator converts any string produced by str (a denotation) back to its original
type, except that it does not accept the string representations of procedure references
or atoms, interprets "nan" and "inf" as strings, treats "-nan" and "-inf" as erroneous,
and classifies numbers as real or integer according to their appearance (so the type of
unstr str 2.0 is integer). Also, since str may do some rounding when rendering a real,
you don’t necessarily get back exactly the number you put in for reals when making this
round trip.

Quoted strings within s can use either the apostrophe (’) or the double quote (") as the
beginning and ending quote character. Whichever one is used is also the one that can be
twinned internally to represent that character. Apart from reducing those twins, unstr is
completely literal about how it interprets what is inside a quoted string. Even backslashes
are not special, in contrast to string literals in SETL source code or equivalently strings
interpreted by unpretty.

Radix-prefixed integer denotations (see strad) are allowed to have trailing sharp signs
(redundantly), just as in SETL source code.

Arbitrary whitespace, and/or a comma, is allowed wherever str would put a single blank
between elements of sets and tuples. Whitespace is permitted around the overall denotation
in s.

The denotype operator can be used to check whether a string is acceptable to unstr.

See also reada, reads, and val.

untie - dissolve stream association made by tie

proc untie (stream, stream)

For symmetry with tie.

val - read number from string

op val (string) : integer

op val (string) : real

This is similar to unstr but expects a numeric denotation as an operand. Another difference
from unstr is that val will return om instead of throwing tantrums if the operand string
does not satisfy its syntactic requirements (which are the same as for numeric literals in
SETL source code).

See also denotype and strad.

wait - wait for any child process status change

proc wait : integer

proc wait (boolean waitflag) : integer

Equivalent to waitpid (-1) or waitpid (-1, waitflag).

The Library 82

waitpid - wait for child process status change

proc waitpid (integer p): integer

proc waitpid (integer p, boolean waitflag) : integer

Tries to obtain the status of a child process identified by p.

If successful, it returns the process ID (pid) of a child process that has terminated, stopped
(suspended), or continued (resumed). The child status appears in status.

The rules for p follow those of POSIX waitpid():

• If p is -1, status is requested for any child process (like wait).

• If p is greater than 0, p specifies the pid of a single child process for which status is
requested.

• If p is 0, status is requested for any child process whose process group ID is equal to
that of the calling process.

• If p is less than -1, status is requested for any child process whose process group ID is
equal to the absolute value of p.

The optional waitflag argument, which defaults to true, specifies whether the calling
process should block, waiting for a child process to terminate, stop, or continue. If false,
meaning don’t block, and the caller has at least one child identified by p, and no child in
that set has a state change to report, waitpid sets status to om and returns 0. Otherwise,
one such child is selected, status gets the state change details, and the pid is returned, just
as in the blocking case.

In the case of termination, the child process and its exit status are said to be reaped, and
the system clears its record of both.

If there are no child processes identified by p, waitpid sets status to om, sets last_error,
and returns -1.

The use of waitpid is seldom necessary except after applying close in mode close_zombie to
a pipe or pump stream, or when programming at the more foundational level of fork. Other-
wise, you might reap away the status of a child created by pipe_from_child, pipe_to_child,
pump, tty_pump, or one of the openmodes "pipe-from", "pipe-to", "pump", or "tty-pump",
before close gets a chance to.

Child processes that have not been waited for when the SETL program terminates are
inherited by a POSIX system process that reaps and discards their statuses when they
terminate, if ever.

See also system, filter, kill, pid, pexists, and time.

whole - format integer

proc whole (integer x, integer wid) : string

proc whole (real x, integer wid) : string

The number round x is converted to a string of length abs wid or more.

If abs wid is larger than necessary, the string is padded with blanks on the left (for positive
wid) or on the right (for negative wid).

If abs wid is too small, a longer string is produced as necessary to accommodate the number.

The Library 83

Although this operator is intended primarily for rendering integer values, the automatic
rounding in the case of real can result in the string "nan", "inf", or "infinity", with or
without a minus sign in front.

See also fixed, floating, str, and strad.

with - set plus one element

op with (set s, var x) : set

Definition: s with x = s + {x}.

See the set union (plus) operator (+), and see also less.

write - write values to stdout

proc write (var args(*))

Equivalent to writea (stdout, args(*)).

See also print and nprint.

writea - write values to stream

proc writea (stream f, var args(*))

The 0 or more args are written in sequence to the stream f, separated by single spaces and
followed by a newline character (\n). All of them are converted as if by str first, with no
exception for strings (contrast printa).

Values written by writea, except for atoms (see newat) and procedure references (see
routine), can be read by reada and getb.

If f is not already open, an attempt is made to auto-open it. See [Automatic opening],
page 47.

On output error, output may be incomplete and last_error may be set.

A synonym for writea is putb.

See also write and nprinta.

84

Operator Precedence

From highest precedence (most tightly binding) to lowest:

operators associativity
unary non-predicates, user-declared unary operators right
power (**) right
star (*), slash (/), atan2, div, mod, rem, bit_and left
binary plus (+), binary minus (-), max, min, bit_or, bit_xor left
less, lessf, with left
npow left
query (?) left
user-declared binary operators left
binary predicates: equalities (=, /=), comparatives (<, >, <=, >=), in,
notin, subset, incs

none

unary predicates: not, even, odd, fexists, lexists, pexists, is_open,
type-testing operators (is_type)

right

and left
or left
impl left

Predicates are intrinsic operators that return boolean, and have lower precedence than all
non-predicate operators.

Unary combining forms such as +/ [1..9], where a left-associative operator is followed by
slash, have the highest precedence, like other non-predicate unary forms. Binary combining
forms such as 0 +/ [1..9], where the left-associative operator is followed by a slash but
also preceded by an operand, have the same precedence as the binary operator.

The associativity of power (**) is changed from the original CIMS SETL to agree with
SETL2 and Fortran. To avoid confusion, it is not allowed in the combining forms, which use
a left-to-right chaining rule.

85

Restricted Mode

It is an error to call the following intrinsics in restricted mode (--restricted command-line
option):

callout,

chdir,

close (except on streams that were opened by the SETL program),

dup, dup2,

exec,

fexists,

filter (except where permitted by an --allow-filter command-line option),

fork,

fsize,

getegid,

getenv,

geteuid,

getgid,

getsid with a non-zero argument,

getuid,

getwd,

glob,

kill (except on processes spawned by pipe_from_child, pipe_to_child, pump, or
tty_pump),

lexists,

link,

mkstemp (except where permitted by an --allow-mkstemp command-line option),

open (except on a timer or where permitted by an --allow-open or --allow-fd-open
command-line option),

pexists,

pipe,

rename,

setctty,

setegid,

setenv,

seteuid,

setgid,

setpgid,

setsid,

setuid,

Restricted Mode 86

socketpair,

symlink,

system (except where permitted by an --allow-system command-line option),

sys_read, sys_write,

tcgetpgrp, tcsetpgrp,

unlink,

unsetctty, and

unsetenv.

Also, umask in restricted mode ORs its argument with the mask that was in effect when the
SETL program was started.

87

Concept Index

#
(sharp) . 2

*
* (star) . 3
** (power) . 3

+
+ (plus) . 4
+:= (plus and assign) . 6

–
- (minus) . 5

/
/ (slash) . 5, 31
/bin/sh . 19, 40, 75

<
<, >, <=, >= (comparatives) . 6

=
=, /= (equalities) . 6

?
? (query) . 6

2
2-norm . 7

A
abs . 7
absolute value . 7
accept connection on server socket 7
acos (arc cosine) . 7
addition . 4
all subsets (power set) . 54
alternative open mode args . 49
and (conjunction) . 8
any (extract leading character) 8
arb (arbitrary element of set) 8
arbitrary vs. random . 8, 22
arc cosine . 7
arc sine . 9
arc tangent . 9
arc tangent of quotient . 9
ASCII . 54, 79
asin (arc sine) . 9
asterisk . 3, 73
atan (arc tangent) . 9
atan2 (arc tangent of quotient) 9
atom type . 38
auto-open and auto-close . 47
automatic flushing . 47

B
backslash escapes . 54, 79
bit_and (bitwise and) . 9
bit_not (bitwise not) . 9
bit_or (bitwise or) . 9
bit_xor (bitwise exclusive or) 9
bitwise logical operators . 9
break (extract leading substring) 9
buffering output . 21, 47
byte value . 10, 29

C
calendar time . 17
calendar time in milliseconds 78
call (indirect call) . 10
callbacks . 64
callout (call C function) . 10
cardinality of set . 2
ceil (least integer upper bound) 10
change directory . 11
char (character of integer code) 10
character code . 10, 29
character code value . 7
chdir (change directory) . 11
checking type . 32
child process . . 11, 19, 21, 44, 53, 54, 55, 72, 75, 77,

78, 82

Concept Index 88

choice, set element . 8, 22
CIMS SETL . 23, 40, 55
clear_error (clear system error indicator) 11
client socket . 40, 42, 43, 60, 66
clock (elapsed time in ms) . 11
close (close stream) . 11
close_await, close_autoreap, close_zombie . . 13
command, run from within program . . 19, 40, 44, 75
command_line (program arguments) 13
command_name (program name) 13
comparatives (<, >, <=, >=) . 6
comparison, order-based . 36, 37
complex numbers . 9
concatenate tuple of strings, with delimiter 33
concatenation, string or tuple 3, 4
conjunction . 8
controlling process . 67
controlling terminal . 67, 76, 80
conversion to string, implicit . 4
convert arbitrary value to string 73
convert character to integer 7, 29
convert from hexadecimal . 79
convert from string . 60, 81
convert number to string 19, 20, 73, 82
convert small integer to character 10
convert string to lowercase . 77
convert string to uppercase . 77
convert to integer 10, 19, 21, 62
convert to real . 20
coprocess . 44, 55, 78
cos (cosine) . 13
cosh (hyperbolic cosine) . 13
CPU time . 77
current working directory 11, 28

D
datagram . 60, 61, 66
datatype . 14, 32, 78
date . 17, 78
date (date and time of day) . 13
decimal point . 19, 20
delimiter . 9, 33, 58, 72
denotype (type of denotation in string) 14
destroy file reference . 79
difference . 5
direct access . 27, 37, 40, 57, 63
directory, change . 11
disjunction . 51
div (integer division) . 14
divisible by 2 . 15, 39
division . 5, 14, 31
domain (map domain) . 14
dup, dup2 (duplicate a file descriptor) 14
dynamic type . 32

E
effective group ID . 24, 67, 68
effective user ID . 25, 68, 69
elapsed CPU time . 77
elapsed time . 11
element of domain . 34
element of set . 8, 22, 34, 83
element of set, string, tuple 30, 39
end of file . 15
environment variable . 25, 68, 80
eof (end-of-file indicators) . 15
epoch . 11, 17, 78
equalities and inequalities (=, /=) 6
ERE (extended regular expression) 28, 35, 70,

72, 74
Euclidean norm . 7
even (test for integer divisible by 2) 15
event-driven programming . 64
exceptional I/O conditions . 64
exec (replace current process) 16
exp (natural exponential) . 16
exponentiation . 3
extended regular expression (ERE) 28, 35, 70,

72, 74
extract arbitrary element from set 22
extract first element from string or tuple 22
extract last element from string or tuple 22
extract leading character using

character set . 8, 38
extract leading substring by exact match 36
extract leading substring by length 34
extract leading substring using

character set . 9, 72
extract trailing character using

character set . 58, 59
extract trailing substring by exact match 59
extract trailing substring by length 59
extract trailing substring using

character set . 58, 59

F
false (truth value) . 17
fdate (format date and time) 17
fexists (test for file existence) 17
file descriptor (fd) . . 14, 17, 18, 40, 61, 64, 66, 71, 73
file mode creation mask . 43, 78
file rename . 62
file size . 22, 23
filename (name of stream) . 17
fileno (fd of stream) . 18
filepos (file position, #bytes transferred) 18
filter (pass string through command) 19
first element from string or tuple, extract 22
fix (truncate real to integer) 19
fixed (format with optional decimal point) 19
float (convert to real . 20
floating (format in scientific notation) 20

Concept Index 89

floating-point infinity . . 3, 4, 5, 10, 19, 20, 21, 57, 62
floor (greatest integer lower bound) 21
flush (flush output buffer) 21, 47, 77
fork (create child process) . 21
format date and time . 17
format number as string 19, 20, 73, 82
from (take arbitrary element from set) 22
fromb (take from beginning of string or tuple) . . 22
frome (take from end of string or tuple) 22
fsize (file size) . 22
ftrunc (set file size) . 23
function reference . 10, 63

G
get (read lines from stdin) . 23
get number from string . 81
get value from string . 81
get values from string . 60
geta (read lines from stream) 23
getb (read values from stream) 23
getc (read character from stream) 24
getchar (read character from stdin) 24
getegid (get effective group ID) 24
getenv (get value of environment variable) 25
geteuid (get effective user ID) 25
getfile (get file contents as string) 25
getgid (get group ID) . 26
getline (read line from stream) 26
getn (read n characters from stream) 26
getpgrp (get process group ID) 27
getpid (get process ID) . 27
getppid (get parent process ID) 27
gets (direct-access read) . 27
getsid (get session ID) . 27
getuid (get real user ID) . 28
getwd (current working directory) 28
glob (pathname wildcard expansion) 28
gmark (find occurrences of pattern) 28
greater than, etc. 6
greatest integer below . 21
group ID . 24, 26, 67, 68
gsub (replace patterns in string) 28

H
half-close . 70
hard link . 34
hex (convert string to hexadecimal) 29
hexadecimal string . 29, 79
host address (Internet) . . . 29, 31, 40, 42, 52, 61, 66
host name (Internet) 17, 29, 31, 40, 42, 52, 66
hostaddr (current host address) 29
hostname (current host name) 29
hyperbolic cosine . 13
hyperbolic sine . 71
hyperbolic tangent . 76

I
ichar (integer code for character) 29

IEEE 754 . 3, 4, 5, 20, 57

impl (implies) . 30

implicit conversion to string . 4

in (membership test; iterator form) 30

incs (subset test) . 31, 74

indirect call . 10, 63

integer division . 5, 14, 31

integer modulus . 37

integer remainder . 62

integer, convert from real 10, 19, 21, 62

integer, convert to real . 20

Internet address, IPv4, IPv6 17, 29, 31, 42, 52,

61, 66, 71

intersection of sets . 3

intslash (integer quotient type switch) 31, 70

ip_addresses (Internet host addresses) 31

ip_names (Internet host names) 31

is_atom . 32

is_boolean . 32

is_integer . 32

is_map . 32

is_mmap . 32

is_numeric . 32

is_om . 32

is_open (is a stream) . 32

is_real . 32

is_routine . 32

is_set . 32

is_smap . 32

is_string . 32

is_tuple . 32

is_type (type testers) . 32

iterator . 30

J
job control 27, 67, 68, 69, 76, 80

join (delimited concatenation) 33

K
kill (send signal to process) 33

Concept Index 90

L
last element from string or tuple, extract 22
last_error (error message from system call) . . . 33
least integer above . 10
len (extract leading substring) 34
length, string or tuple . 2
less (set less given element) 34
less than, etc. 6
lessf (map less given domain element) 34
lexists (existence of file or symlink) 34
line buffering . 44, 78
link (create hard link) . 34
local socket . 43
log (natural logarithm) . 35
logical operators . 8, 38, 51
logical operators, bitwise . 9
lowercase, convert to . 77
lpad (pad string on left with blanks) 35

M
magic (recognize regular expressions) 35, 70
magnitude . 7
map domain . 14, 34
map range . 58
mark (find first occurrence of pattern) 35
match (extract leading substring) 36
max (maximum) . 36
membership test . 30, 39
min (minimum) . 37
minus (-) . 5
mkstemp (create and open temporary file) 37
mod (modulus; symmetric set difference) 37
mode, open . 40
modulus . 7
monotonic clock . 11
multiplication . 3
mutex . 34, 75

N
name of stream . 17
NaN 3, 4, 5, 6, 10, 19, 21, 36, 37, 62
nargs (number of arguments given by caller) . . . 38
natural exponential . 16
natural logarithm . 35
nearest integer . 62
negation . 5
newat (create new atom) . 38
no_error . 38
nondeterministic choice . 8, 22
not (logical negation) . 38
notany (extract leading character) 38
notin (membership test) . 39
npow (all subsets of a given size) 39
nprint (print to stdout sans newline) 39
nprinta (print to stream sans newline) 39
number of arguments given by caller 38

numeric affirmation . 4
numeric comparisons . 6
numeric conversion 10, 19, 20, 21, 62

O
odd (test for integer not divisible by 2) 39
om (the undefined value) . 40
open (open a stream) . 40
open compatibility . 40
open, stream . 32
operator precedence . 84
or (disjunction) . 51
order-based comparison 6, 36, 37

P
parent process . 21, 27
passing file descriptors . 61, 66
pathname accessibility and existence 17, 34
pathname wildcard expansion 28
pathname, socket 11, 17, 40, 43, 61, 66
pattern matching, regexp-based . . 28, 35, 70, 72, 74
pattern matching, SNOBOL-inspired . . 8, 9, 34, 36,

38, 58, 59, 72
peekc (peek at next input character) 51
peekchar (peek at next character in stdin) 52
peer_address (peer host address) 52
peer_name (peer host name) 52
peer_port (peer port number) 52
peer_sockaddr (peer address

and port number) . 52
pexists (test for existence of processes) 53
phase, atan2 operator . 9
pid (process ID of connected child) 53
pipe . 44
pipe (create primitive pipe) . 53
pipe_from_child (pipe from child process) 53
pipe_to_child (pipe to child process) 54
piping to and from programs 40
plus (+) . 4
port (Internet port number) 54
port number (Internet) . . . 40, 42, 52, 54, 61, 66, 71
POSIX errno . 11, 33, 38
pow (power set) . 54
power (**) . 3
power set members of a given size 39
power, raise number to . 3
precedence of operators . 84
pretty (printable ASCII rendering of string) . . . 54
print (print to stdout) . 54
print lines . 39
printa (print to stream) . 55
printable characters . 54, 79
procedure reference . 10, 63
process group ID . 27, 33, 53, 68
process ID (pid) 21, 27, 33, 53, 68, 69, 82
process image, replace . 16

Concept Index 91

process, existence . 53
product . 3
program arguments (command-line) 13
program name . 13
pseudo-fd . 44, 46
pseudo-random . 57, 69
pseudo-terminal (pty) 44, 67, 78
pump . 40, 44
pump (bidirectional stream to child process) 55
push characters back into stream 79
put (write lines to stdout) . 55
puta (write lines to stream) . 55
putb (write values to stream) 56
putc (write characters to stream) 56
putchar (write characters to stdout) 56
putfile (write characters to stream) 56
putline (write lines to stream) 57
puts (direct-access write) . 57

Q
query (?) . 6
quotient . 5, 14, 31

R
radix-prefixed number . 73
raise number to power . 3
random (numbers and selections) 57
random access 27, 37, 40, 57, 63
range (map range) . 58
rany (extract trailing character) 58
rbreak (extract trailing substring) 58
read (get values from stdin) 59
read character . 24
read characters . 25
read line . 26
read lines . 23
read n characters . 26
read number from string . 81
read value from string . 81
read values . 23, 59
read values from string . 60
read, low-level . 75
reada (get values from stream) 59
readlink (symbolic link referent) 60
reads (read values from string) 60
real division . 5, 31
real group ID . 26, 68
real time . 11, 40, 46
real user ID . 28, 69
real, convert from integer . 20
real, convert to integer 10, 19, 21, 62
reap termination status 11, 19, 75, 82
recv (receive on UDP client socket) 42, 60
recv_fd (receive file descriptor) 61
recvfrom (receive datagram on server socket) . . . 61

recvfrom (receive on datagram
server socket) . 42, 43

regular expression 28, 35, 70, 72, 74
relational operators . 6
rem (integer remainder) . 62
remove arbitrary element from set 22
remove first element from string or tuple 22
remove last element from string or tuple 22
rename (rename file) . 62
replace process image . 16
replication, string or tuple . 3
restricted mode . 85
reverse (reverse string) . 62
rewind (rewind direct-access stream) 62
rlen (extract trailing substring) 59
rmatch (extract trailing substring) 59
rnotany (extract trailing character) 59
round (round to nearest integer) 62
routine (create procedure reference) 63
rpad (pad string on right with blanks) 63
rspan (extract trailing substring) 59
run command from within program . . 19, 40, 44, 75

S
saved user ID . 69
scientific notation . 20
seed, pseudo-random number generation 69
seek (reposition direct-access stream) 63
seek_set, seek_cur, seek_end 64
seekable (direct access) 27, 37, 40, 57, 63
select (wait for event or timeout) 64
send (send datagram on client socket) 66
send (send on datagram client socket) 42, 43
send_fd (send file descriptor) 66
sendto (send datagram on server socket) 66
sendto (send on datagram server socket) . . . 42, 43
server socket 7, 40, 42, 43, 61, 66
service name (Internet) 40, 42, 66
session ID . 27, 69
set difference . 5
set element choice . 8, 22
set intersection . 3
set less given element . 34
set membership . 30, 39
set plus one element . 83
set union . 4
set, number of members . 2
set_intslash (integer quotient type) 31, 70
set_magic (regular expression recognition) 70
setctty (acquire controlling terminal) 67
setegid (set effective group ID) 67
setenv (set environment variable) 68
seteuid (set effective user ID) 68
setgid (set group ID) . 68
setl command . 13
SETL2 . 5, 10, 23, 31, 40, 55
setpgid (set process group ID) 68

Concept Index 92

setrandom (set random seed) 69
setsid (create new session) . 69
setuid (set user ID) . 69
sharp (#) . 2
short-circuiting operators 6, 8, 51
shut_rd, shut_wr, shut_rdwr 70
shutdown (close I/O in one or

both directions) . 70
SIGALRM . 44
SIGCHLD . 44
sign (sign of number) . 70
signal . 33
signal stream . 40, 44
sin (sine) . 71
sinh (hyperbolic sine) . 71
size of file . 22, 23
size of set . 2
slash (/) . 5
SNOBOL-inspired pattern matching . . 8, 9, 34, 36,

38, 58, 59, 72
sockaddr (Internet address and port number) . . 71
socket 7, 40, 42, 43, 52, 54, 60, 61, 66, 71
socketpair . 44, 55
socketpair (create bidirectional

local channel) . 71
span (extract leading substring) 72
split (split string into tuple) 72
sqrt (square root) . 72
star (*) . 3
status (child process status) 72
status, child process 11, 19, 75, 82
stderr (standard error output) 46, 73
stdin (standard input) . 46, 73
stdout (standard output) 46, 73
str (string representation of value) 73
strad (integer as radix-prefixed string) 73
stream buffering . 21, 47
stream handle . 40
stream, open . 32
string concatenation . 3, 4
string length . 2
string membership . 30, 39
string padding . 35, 63
string replication . 3
string splitting . 72
string substitution . 28, 74
sub (replace pattern in string) 74
subnormal . 3, 4, 5
subset (subset test) . 31, 74
subtraction . 5
sum . 4
symbolic link . 17, 34, 60, 75
symlink (create symbolic link) 75
symmetric set difference . 37
sys_read (low-level read) . 75
sys_write (low-level write) . 76
system (run command in subshell) 75
system call errors . 11, 33, 38

T
take arbitrary element from set 22
take first element from string or tuple 22
take last element from string or tuple 22
tan (tangent) . 76
tanh (hyperbolic tangent) . 76
tcgetpgrp (get foreground process group ID) . . . 76
TCP . 7, 40, 42, 52, 54, 70, 71
tcsetpgrp (put process group

into foreground) . 76
temporary filename, unique . 37
terminal, controlling . 67, 80
termination status, child process . . 11, 19, 72, 75, 82
test for being a stream . 32
testing type . 32
tie (flush output upon input elsewhere) 47, 77
time (elapsed CPU time in ms) 77
time of day . 13, 17, 78
time, real . 11
timer stream . 40, 46
to_lower (convert to lowercase) 77
to_upper (convert to uppercase) 77
tod (calendar time in ms) . 78
true (truth value) . 78
truncation, numeric . 19
truth table . 30
tty-pump . 40, 44
tuple concatenation . 3, 4
tuple membership . 30, 39
tuple replication . 3
tuple, length . 2
type (type of SETL value) . 78
type of value unstr will yield 14
type, checking . 32

U
UDP 40, 42, 52, 54, 60, 61, 66, 71
umask (set file mode creation mask) 78
undefined . 40
ungetc (push characters back into stream) 79
ungetchar (push characters back into stdin) . . . 79
unhex (convert from hexadecimal) 79
uninitialized SETL variable . 40
union of sets . 4
unique temporary filename . 37
Unix-domain socket . . 7, 17, 40, 43, 44, 55, 61, 66, 71
unlink (destroy file reference) 79
unpretty (convert string from pretty form) 79
unsetctty (relinquish controlling terminal) 80
unsetenv (remove environment variable) 80
unstr (read value from string) 81
uppercase, convert to . 77
user ID . 25, 28, 68, 69
UTC . 17

Concept Index 93

V
val (read number from string) 81
variable number of arguments 38

W
wait (wait for any child process

status change) . 81
waitpid (wait for child process status change) . . 82
whitespace . 23, 59, 72, 81
whole (format integer) . 82
wildcard expansion, pathname 28

with (set plus one element) . 83
working directory, current 11, 28
write (write values to stdout) 83
write characters . 56
write lines . 55, 57
write values . 56, 83
write, low-level . 76
writea (write values to stream) 83

Z
zombie process . 11, 82

	About this Library Reference
	The Library
	sharp (#) - size of set; length of string or tuple
	star (*) - multiplication; set intersection; string or tuple replication
	power (**) - exponentiation
	plus (+) - addition; set union; concatenation
	minus (-) - negation or subtraction; set difference
	slash (/) - division
	equalities (=, /=) - equal, not equal
	comparatives (<, >, <=, >=) - order-based comparisons
	query (?) - short-circuiting om test
	abs - absolute value; integer value of character; Euclidean norm
	accept - accept connection on server socket
	acos - arc cosine
	and - logical conjunction
	any - extract leading character using character set
	arb - arbitrary element of set
	asin - arc sine
	atan - arc tangent
	atan2 - arc tangent of quotient
	bit_and, bit_not, bit_or, bit_xor - bitwise logical ops
	break - extract leading substring using character set
	call - indirect call
	callout - call C function
	ceil - ceiling (least integer upper bound)
	char - character encoding of small integer
	chdir - change directory
	clear_error - clear system error indicator
	clock - elapsed time in milliseconds
	close - close stream
	close_await, close_autoreap, close_zombie - constants for use with close
	command_line - command-line arguments
	command_name - command name
	cos - cosine
	cosh - hyperbolic cosine
	date - date and time of day
	denotype - type of denotation in string
	div - integer division
	domain - domain of map
	dup, dup2 - duplicate a file descriptor
	eof - end-of-file indicators
	even - test for integer divisible by 2
	exec - execute another program in place of current one
	exp - natural exponential (e raised to a power)
	false - predefined boolean value
	fdate - format date and time
	fexists - test for existence of file
	filename - name of stream
	fileno - file descriptor of stream
	filepos - current file position or #bytes transferred
	filter - filter string through external command
	fix - truncate real number to integer
	fixed - format number with optional decimal point
	float - convert number to real
	floating - format number in scientific notation
	floor - floor (greatest integer lower bound)
	flush - flush output buffer
	fork - fork into parent and child process
	from - take arbitrary element from set
	fromb - take from beginning of string or tuple
	frome - take from end of string or tuple
	fsize - size of file in bytes
	ftrunc - set size of file in bytes
	get - read lines from stdin
	geta - read lines from stream
	getb - read values from stream
	getc - read character from stream
	getchar - read character from stdin
	getegid - get effective group ID
	getenv - get value of environment variable
	geteuid - get effective user ID
	getfile - read stream up to the end
	getgid - get real group ID
	getline - read line from stream
	getn - read fixed number of characters from stream
	getpgrp - get process group ID
	getpid - get process ID
	getppid - get parent process ID
	gets - direct-access read
	getsid - get session ID
	getuid - get real user ID
	getwd - current working directory
	glob - pathname wildcard expansion
	gmark - find all occurrences of pattern in string
	gsub - replace patterns in string
	hex - convert string to hexadecimal
	hostaddr - current host address
	hostname - current host name
	ichar - integer code for character
	impl - implication
	in - membership test; iterator form
	incs - subset test
	intslash - integer quotient type switch
	ip_addresses - internet host addresses
	ip_names - internet host names
	is_type - type testers
	is_open - test for being a stream
	join - concatenate tuple of strings, with delimiter
	kill - send signal to process
	last_error - last error message from system function
	len - extract leading substring by length
	less - set less given element
	lessf - map less given domain element
	lexists - test for existence of file or symlink
	link - create hard link
	log - natural logarithm
	lpad - pad string on left with blanks
	magic - regular expression recognition switch
	mark - find first occurrence of pattern in string
	match - extract leading substring by exact match
	max - maximum
	min - minimum
	mkstemp - create and open temporary file
	mod - integer modulus; symmetric set difference
	nargs - number of arguments given by caller
	newat - create new atom
	no_error - non-error message
	not - logical negation
	notany - extract leading character using character set
	notin - membership test
	npow - all subsets of a given size
	nprint - print to stdout with no trailing newline
	nprinta - print to stream with no trailing newline
	odd - test for integer not divisible by 2
	om - the undefined value
	open - open a stream
	Arguments to open
	TCP and UDP sockets
	Unix-domain sockets
	Connected subprocesses
	Signal streams
	Timer streams
	Predefined streams
	Automatic opening (and closing) of streams
	Buffering
	Alternative how arguments to open

	or - logical disjunction
	peekc - peek at next character in stream
	peekchar - peek at next character in stdin
	peer_address - peer host address
	peer_name - peer host name
	peer_port - peer port number
	peer_sockaddr - peer address and port number
	pexists - test for existence of processes
	pid - process ID of connected child
	pipe - create primitive pipe
	pipe_from_child - pipe from child process
	pipe_to_child - pipe to child process
	port - Internet port number
	pow - power set
	pretty - printable ASCII rendering of string
	print - print to stdout
	printa - print to stream
	pump - bidirectional stream to child process
	put - write lines to stdout
	puta - write lines to stream
	putb - write values to stream
	putc - write characters to stream
	putchar - write characters to stdout
	putfile - write characters to stream
	putline - write lines to stream
	puts - direct-access write
	random - pseudo-random numbers and selections
	range - range of map
	rany - extract trailing character using character set
	rbreak - extract trailing substring using character set
	rlen - extract trailing substring by length
	rmatch - extract trailing substring by exact match
	rnotany - extract trailing character using character set
	rspan - extract trailing substring using character set
	read - read values from one or more lines of stdin
	reada - read values from one or more lines of stream
	readlink - symbolic link referent
	reads - read values from a string
	recv - receive datagram on UDP client socket
	recvfrom - receive datagram on server socket
	recv_fd - receive file descriptor
	rem - integer remainder
	rename - rename file
	reverse - reverse string
	rewind - rewind direct-access stream
	round - round to nearest integer
	routine - create procedure reference
	rpad - pad string on right with blanks
	seek - reposition direct-access stream
	seek_set, seek_cur, seek_end - constants for use with seek
	select - wait for event or timeout
	send - send datagram on client socket
	sendto - send datagram on server socket
	send_fd - send file descriptor
	setctty - acquire controlling terminal
	setegid - set effective group ID
	setenv - set environment variable
	seteuid - set effective user ID
	setgid - set group ID
	setpgid - set process group ID
	setrandom - set random seed
	setsid - create new session
	setuid - set user ID
	set_intslash - muck with integer division semantics
	set_magic - regular expression recognition
	shutdown - disable I/O in one or both directions
	shut_rd, shut_wr, shut_rdwr - constants for use with shutdown
	sign - sign
	sin - sine
	sinh - hyperbolic sine
	sockaddr - Internet address and port number
	socketpair - create bidirectional local channel
	span - extract leading substring using character set
	split - split string into tuple
	sqrt - square root
	status - child process status
	stdin, stdout, stderr - predefined streams
	str - string representation of value
	strad - radix-prefixed string representation of integer
	sub - replace pattern in string
	subset - subset test
	symlink - create symbolic link
	system - run command in subshell
	sys_read - low-level read
	sys_write - low-level write
	tan - trigonometric tangent
	tanh - hyperbolic tangent
	tcgetpgrp - get foreground process group ID
	tcsetpgrp - put process group into foreground
	tie - auto-flush stream upon input from other stream
	time - elapsed CPU time in milliseconds
	to_lower - convert string to lowercase
	to_upper - convert string to uppercase
	tod - calendar time in milliseconds
	true - predefined boolean value
	tty_pump - master end of child stream over pseudo-terminal
	type - type of SETL value
	umask - set file mode creation mask
	ungetc - push characters back into stream
	ungetchar - push characters back into stdin
	unhex - convert from hexadecimal
	unlink - destroy file reference
	unpretty - convert string from pretty form
	unsetctty - relinquish controlling terminal
	unsetenv - remove environment variable definition
	unstr - read value from string
	untie - dissolve stream association made by tie
	val - read number from string
	wait - wait for any child process status change
	waitpid - wait for child process status change
	whole - format integer
	with - set plus one element
	write - write values to stdout
	writea - write values to stream

	Operator Precedence
	Restricted Mode
	Concept Index

